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SUBJECT: Pershing II Follow-On Test: Size Reduced by Sequential
Analysis

By memorandum of 30 August 1982 (Reference 1), the Under
Secretary of the Army tasked the service to "review our
[operational test] methodology, to include considerations of
mathematical rigor, risks, planning horizon, costs, and
operational matters." In discussion of this matter with the

author, he further elaborated the objectives:

a) Minimize cost of testing over the program life. Monitor

all test results, including those of components as well as of the
system, to minimize "no-tests" and to save on full-up tests. Use
sequential analysis to further pare requirements for missile
flights.

b) Criteria of test adequacy should be no more severe than

those of other services (e.g., Minuteman, Poseidon).

c) Challenge the necessity for an annual update.

d) Consider whether testing, maintenance float, and reload
were independent requirements as opposed to multiple missions for
the same inventory of missiles.

The task was passed to the Army Research Office (Research

Triangle, NC) which manages the business of the Army's Mathematics
Steering Committee (Dr. Jagdish Chandra, Chairman), supporting
mathematical research of relevance to the Army and the
improvements in mathematical methods employed in the Army's
research and study agencies.

4 The work summarized here is composed of contributions of
several statisticians whose aid was solicited by the AMSC: Dr.
Michael Woodroofe (University of Michigan)*, Dr. Nozer
Singpurwalla (George Washington University), and Dr. Robert Launer
(Army Research Office), as well as the author of this report.
Others have provided informal comments and criticisms. An early

* version of this paper, prior to the author's knowledge of this
other research, was presented as a talk at a conference of Army
mathematicians (Reference 2).

* At Rutgers University during the course of this research.
i
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Chapter I

The Problem

Two documents combined set forth the guidance the Joint
Chiefs of Staff have provided to the military services regarding
the conduct and reporting of tests of certain systems. For the
Army only the Pershing Missile system is covered (Pershing I and

4 Ia, and now Pershing II).

In a memorandum of 1975 (Reference 3), the Joint Chief of
Staff directed that numerical confidence statements should be
based on WSEG Report 92C (Reference 4), an extract of which is at
Appendix C. "The goal of a test program should be to allow
detection of a minimum change of X percent at the Y percent
confidence level." * It suggests, by way of example, the use of
Fisher's Exact Test to demonstrate success or failure in meeting

* this criterion.

References 3 and 4 have just been superseded. The revisions
(References 5 and 6) eliminate an ambiguity and add considerations
not previously called for and not discussed here except to note
that the criteria to be applied to Pershing II are now less
demanding than those applied to strategic systems. Fisher's Exact
Test is still countenanced.

This use of this criterion appeared to the author to lack a
sound statistical justification, and attempts to patch it up were
unsuccessful. Appeal to a number of practicing statisticians
within and outside the Army supported my challenge to Fisher's
Exact Test (FET) in its application to Pershing reliability
tracking. No one was contesting the ability of the FET to provide
estimates of the probability that two samples, which have yielded
pass-fail data, come from the same parent population, though
Kendall and Stuart (Reference 7), do condemn its use for small
samples.

With such an error apparently arising from an application of

the methods of the "frequency" school of statistics, the obvious
alternative was to try the methods of the "Bayesian" school.

There are many expositions of methods based on the use of
Bayes' Theorem, the most recent of which--"Bayesian Reliability
Analysis" by Martz and Waller--(Reference 8) I shall quote at
intervals. Among the works arguing for the adoption of Bayesian
methods, the following are noteworthy:

* X and Y are classified numbers.
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Raiffa and Schlaifer - Applied Statistical Decision Theory
(Reference 9) with a very complete description of the method of
conjugate prior distributions.

Jaynes E.T., "Prior Probabilities" (IEEE Transactions on
System Science and Cybernetics, September 1968) (Reference 10).
Deduction from the principles of maximum entropy and invariance
under certain group transformations leads directly to the Beta
distribution as conjugate prior to a Bernoulli process; indeed to

where s is the number of successes in n trials observed as the
basis for estimating p. This removes some of the "ad hoc" or
1"mathematically convenient" color of conjugate priors when relying
on Raiffa and Schlaifer.

Martz and Waller perhaps epitomize the case best:

0 "There are several benefits in using Bayesian methods in
reliability. First of all, it is important to recognize that all
statistical inferential theories, whether sampling theory,
Bayesian, likelihood, or otherwise, require some degree of
subjectivity in their use. Sampling theory requires assumptions
concerning such things as a sampling model, confidence
coefficient, which estimator to use, and so on. For example, a
sampling theory analysis proceeds as if it were believed a priori
that the data were exactly [exponentially] distributed, that each
observation had exactly the same mean life 0, and that each
observation was distributed exactly independently of every other
sample observation. The Bayesian method provides a satisfactory
way of explicitly introducing and organizing assumptions regarding
prior knowledge or ignorance. These assumptions lead via Bayes'
theorem to posterior inferences, that is, inference obtained once
the data have been incorporated into the analysis, about the
reliability parameter(s) of interest. Bayes' theorem provides a
simple, error-free truism for incorporating the prior information.
The engineering judgment and prior knowledge are brought out into
the open and are there for everyone to see instead of being
quietly hidden. The engineer usually appreciates this opportunity
to divulge such prior information in a formalized way."

* The authors I commend are not, on philosophical matters, in
complete agreement, and the authors (and critics) of the methods
proposed in this paper have their differences, some of which
become important as we proceed.



Suffice it to say that the Bayesian approach requires a more
careful statement of the problem, to include in particular the
prior distribution function, costs and risks: matters which the
frequentists collapse into the confidence limits c and 3.
If there is indeed a legitimate uncertainty in (the form of) the
prior distribution, that uncertainty must surely propagate into an

uncertainty in the predictions for the process. In some cases
results can be shown to be insensitive to the prior, and thus a

convergence of Bayesian and frequentist answers occurs; but
lacking such invariance, the frequentists are hard pressed to
prove they have solved the right problem.

Having said this, I must confess that for some purposes we
shall employ the frequentist approach, primarily because a full
Bayesian solution has not been worked out.

Section 1. Literal Interpretation of JCS Guidance:

". . . annual . . . detection of a minimum reliability change

* of X percent at the Y percent confidence level."

A "change" in something means that its previous value has
been defined. It would appear that an evaluation of the results
of the first year's Follow-on-Test (FOT) is to be compared to that
of the Operational Test (the base-line)(OT), and the evaluations
of subsequent FOTs are to be compared to the evaluations made a
year ago. The tests being of something less than the full combat

Smode of the system, projection to combat capability is to be made;
thus while test results are to be reported, they are to be
interpreted as well. This interpretation is surely to be based on
all prior knowledge of system performance; i.e., all prior testing
as well as that most recently at hand, "weighted" (one might say)
by expert judgment of the relevance of older tests and analysis.

In the case of Pershing II, we shall have an inventory of
missiles produced over a period of time and expected to be in
service for a longer period. From the point of view of

* homogeneity, the inventory may need to be divided into two or more
blocks, based on the significance of any changes in the production
process during the run. When they are subjected to (annual) test,
missiles will be of different ages as well from different blocks;
so serial number and age may influence reliability at the time of

testing or use in combat. It is clear, then, that in treating of
a "change" in reliability, we are dealing with an uncertain base.
Options which are open to us include:

a) Computing a "best" estimate from the OT firings, and
treating it as the exact value of the reliability at that time of
all the inventory.

.,



b) Computing as in (a), but associating an uncertainty
(standard deviation) to it also, to describe the uncertain
reference point.

In either case, the results of each subsequent (annual) test
would be compared to this as standard.

c) Computing as in (b), but then modifying the estimates
using the results of subsequent tests (more trials, more

V successes, more failures). There are extremes in this process
which are to be avoided:

4 (i) This modification might consist of using only the
previous year's results as indication of the remaining inventory.

(ii) This modification might consist of accumulating
the results of all prior tests, without regard to the aging effect
or block modifications.

Judgment is clearly needed. Limiting the criterion to the
smallness of the latest annual change (with small samples in the
two cases) could result in a dangerous accumulation of change over
the system life. On the other hand, where no statistically

.Jr significant change has been detected, it would be reasonable to
* add one year's results to the results of the whole prior test

series of a homogeneous block in estimating the average value at,
say, the average age of the tested articles. It is probably not
possible to specify in advance the details of the critical results
to be reported. What is more important is that analyses be
conducted to discover what are the constant and what are the
variable components of the system reliability. Finally, detection
of a trend should make it possible to forecast when the results of
that trend will no longer be tolerable, and so signal the degree
of urgency with which management should act to correct the trend.

d) This brings us to the question of the frequency of
reporting the results of testing and analysis. The current
practice is an annual report which probably has its roots in
adminstrative cycles. The technical problems which reporting
communicates to management are probably of two sorts: long-term
aging with gradual deterioration, ("tone-hoss shay" syndrome) and
catastrophic failures. The latter tend to announce their presence
in consistent repetitions of particular failure modes, and so call
for out-of-cycle action no matter what the standard interval
between reports. The former, on the other hand, are evidence of
problems only slowly exacerbating, and so allow a more leisurely
pace of administrative response. Alternatives to the present
annual cycle are proposed below, for situations in which no
guarantee of a clear bright green light or red light is available

I, annually: (i) A guarantee can be given of a low likelihood of
having to wait more than, say, 16 months for such a signal, along
with the provision of a technical review of all failures showing
any repetitions of mode. (ii) Administratively, skipping one
year's report may be simpler.



V These options will be explored in one or more places in the
mathematical sections to follow.

Two assumptions have immediately to be disposed of:

1) Because Fisher's Exact Test is mentioned in JCS
guidance, its use is correct. and mandatory.

Fisher's Exact Test is an enumeration of all possible
relative outcomes in two series of pass-fail tests, subject to the
restraints that the numbers of tests in each series be fixed and
the combined number of successes also. It yields the probabiliti
that the articles tested in the two series were drawn from the
same population--one with a fixed probability of pass. If the
total number of successes is not controlled, the results of
FET admit of this interpretation only in the limit of large
samples. Given that the probability of success could be different
in the two populations, it is sometimes claimed that FET can be
used to estimate the probability that they differ by prescribed

* amounts. This claim is unwarranted. The JCS could be faulted for
* suggesting the test, but they did not underwrite the extended use

as in the Army' s methodology. (See Kendall and Stuart; also
Chapter III).

2) We can know the reliability of an object.

teWe shall never know the "true" as-manufactured reliability of
tecomponents of the Pershing system, and much of such knowledge

as we do gain will come at the expense of tactical inventory. It
may be that, for the purposes of designing tests of operational
reliability, we need not know this a priori probability with any
great accuracy; and so methods which treat it as known for this
purpose may be satisfactory. This does not justify the assumption
when analyzing the results of actual tests.



Section 2. Mathematical Preliminaries

Bayes' Theorem: The Need for a Prior Distribution

Essential to much of what follows is Bayes' Theorem, sketched
here as background. The conditional probability of an event B,
given that another event A has occurred, is symbolized and defined
by

_P ( Al A 3 1

where P(A) (4 0) is the marginal probability of event A, and
P(A,B) is the probability of joint occurrence of A and B. One may
also speak of P(A/B) = P(A,B)/P(B) with similar meanings and

* limits, leading to

* Given that B can occur in n ways Bi (i=l,2,...,n) one of which
always occurs with A, we may sum expressions like Eq. 1.3 for'the
entire set of events Bi-P"A 7,9(- I ' (A 1 ) (9 '(A .

as the multiplier of P(A) is equal to 1, having encompassed all
possible pairings. If P(A) * 0, we have Bayes' Theorem:

now1A) that)'(' evens B

Suppose now that events Bi are logically (causally) prior to
event A. Then P(Bi) is called the prior distribution of
Bi, P(A/Bi) the likelihood of A, given Bi, P(A) the marginal
distribution of A, and P(Bi/A) the posterior distribution of Bi.
, ayes' Theorem, given in symbols by Eq.l.5, may then be stated in
words:

Posterior Distribution = Prior Distribution X Likelihood (Function)
Marginal Distribution

(This argument holds for both discrete and .ontinuous distributions
of probability.)

Likelihood functions are a familiar staple of probability
theory, being forecasts of the frequency of chance events A based on
presumptions about certain prior events or conditions (a die that is
unbiased, the "normal" distribution of errors, half-life of a known
radioactive substance). Marginal distributions then are forecasts of

W. W



the results of experiments. Bayes' Theorem tells us that inferences
about the events Bi which lead to a marginal distribution cannot be
derived from the likelihood function alone, but require knowledge of
the prior distribution P(Bi) as well. In the context of our task, we

• .need to know more than the results of a set of missile firings to
infer the reliability of the missile.

Other requirements of a Bayesian analysis will be discussed as

the issues arise.

Section 3. Illustration of an Analysis in Accord with JCS
Guidelines

We assume that the missiles and associated ground equipment used

in an annual test do come from a homogeneous population, and that the
several tests within that year are statistically independent. We
assume further that the reliability p is definable, and then may
assert that were we to know p, the probability'-of s,' successes and f

failures in n,' trials (nl' = sl' + fl') would be by Bernoulli's
formula (a likelihood function):

Y1 1)
f'f

From component testing, comparison with similar systems,
comparison with other products of the same manufacturer, engineering
analysis, we should develop an estimate of p and a measure of our
confidence in that estimate. Methods exist, e.g. that of Maximum
Entropy (Reference 10), for constructing from this information a
function with the properties of a probability distribution--a prior
distribution. Constraints of reasonableness and mathematical
convenience come into the selection process. With limited
information at hand, there may be no unique solution. The analyst is
free to try several priors and to observe the sensitivity of answers
to such variations.

Given a likelihood function, there can generally be found a
6 "conjugate" prior function (so-called because it marries

mathematically to the likelihood function); properly a class of such

functions, dependent on a limited number of parameters to distinguish
members of the class. Conjugate to the Bernoulli's distribution is
the Beta distribution, written

~~d.0 /A P5b4.3

d(- C4)

6~yP 5



Different sets of the parameters s, and fo give rise to functions
whose graphs are variously peaked at some locale within the limits of
0 to 1, are relatively flat, are J-shaped and strongly peaked at 0 or
1, or are even U-shaped and strongly peaked at both 0 and 1. It is a

rich set of functions.

Taking the product of dP(so,fo) with the Bernoulli function, we
get

s4-
which when integrated over the range of 0 to 1 gives

the marginal distribution of sl ' given B(s 0 ,f0 ) as prior. The ratio
of Eqs. 1.6 and 1.7 gives the posterior distribution of p for .s,' and
f observed:

explaining my notation and revealing the meaning of conjugation.

From a prior distribution B(so, f0 ), and a likelihood function

for a test of a sample of size n 1 ', we have created a function which,
as a posterior distribution from that experiment, is logically the
prior when testing a second sample of size n2 '. This process can be

* repeated ad libitum, making sample 1 refer to all prior information
and sample 2 the latest test.

.'..:
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Now the JCS asks to know the probability that the reliability of
sample 2 (and by inference that of the population from which it was
drawn) is less than a certain fraction k (o < k < l)of the
reliability estimate p of sample 1. If the evidentiary basis for
this answer lies entirely in the test of n2' items, then we may
assume instead a uniform prior distribution, drop the primes on n2',
s2', and f2' and represent this probability by

k ,

which we then integrate over the distribution of p1 to get the
probability that p2 < kpl:

65

The probability that p2>kpl is Just 1 minus this result.



As an aid to understanding the generality of this result,

consider the case where pl rl x r3 and p2-r2 x r3 where r3 is a
reliability factor not subject to degradation but just as much

subject to discovery as rl and r2. Within the framework of Beta-
function priors, we might be led to the posterior distribution:

where s3(f3) is the total number of observed successes (failures) of

the subsystems described by r3. For any values of r3 and k between 0

and 1, P(p2 < kpl) = P(r2 < krl). When the latter function is given

by integrating Eq.l.10 first over r3 from 0 to 1, it is clear that

the result is the same as though r3 = 1 (i.e., it can be ignored).

Thus using the criterion p2 < kpl we cam be freed of any concern

about reliability factors common to pl and p2. I would assert that

this is a good reason to employ this criterion in preference to the

one described next.

The JCS guidance has not always been interpreted as speaking to

a proportional reduction in reliability; sometimes it has been

interpreted as measuring a reduction of, say, lO0d percentage points

Instead of Eq. 1.9 we would then use

(While we have strayed from the neatness of conjugate functions, by

reason of the incomplete integrals, we still have a consistent

method. Similar expressions will be found in Reference 8, p. 271.)

* Indeed, the latest revision of the JCS guidance (Reference 5)
mandates this form of the criterion.

!v L



Eqs. 1.9 and 1.11 give mathematical meaning to the JCS guidance.
If at the chosen confidence level it is deemed that there has been no
significant change in the reliability between samples 1 and 2, then
sample 2 should be merged with sample 1 in preparation for the next
year is testing. Other criteria should be examined also (e.g.,
probability that there has been no significant departure from a

S. nominal value), but that does not refute the translation into
mathematics of the JCS guidelines.

At this point I note that much of the historical course of

development of mathematics has been devoted to a search for solutions
requiring a minimum of actual manipulation of numbers. The
approximations used by statisticians are simply good examples of
this. The ready availability today of powerful computers reduces the
need to employ approximations which may be questionable in particular
cases. Most of the calculations to be described here have been
carried out on a programmable hand calculator (HP-41) or home
computer (Apple, Commodore, etc.). Accordingly, the reader need not
be concerned with an apparent intractibility of the formulas. They

* could be evaluated in the field by the troops of a Pershing fire

unit.

There are two matters of concern: the prior distribution and
limits to the size of Sample 1. I have already discussed problems
with the prior distribution. One assertion made is that with
increase in the size of the data base it can become misleadingly
narrow, ignoring "lunknown-unknowns." A different way of saying this
is that tests performed sufficiently long ago may be irrelevant in
describing the present state of the missile inventory; the meaning
of this argument is that a larger annual test size is needed to
compensate for stale data in Sample 1. The question of test size
will be the subject of the following chapters. Of course, if there

9, is no evidence of a change in reliability over the years, there is no
reason to purge old data.

Section 4. Optimum Test Size

S In order to determine the number of missiles which must be
procured in the next few years to support a test program through a
long period of service life, one must have an estimate of the average
annual consumption in testing. To get this estimate, especially if
it be glorified by a phase like "optimum test size," one must know
what questions the tests are supposed to answer and how frequently.

0. This in turn means "getting into the skull" of the JCS. We must
assume that first of all there is sufficient reason to conduct the
tests, even at the risk of compromise of properly-classified
information. We know that there will be a finite inventory, and that
testing reduces that inventory, whether or not it be formally divided
into tactical and non-tactical portions. We can then ask the

Vol



4question: how does the result of an additional test change our
perception of the system reliability, and so of the sufficiency of

the lesser inventory of missiles to conduct a military mission should

it be committed to combat at a future date? Possible answers are
discussed in Chapter V. As there are circumstances under which the
answer is insensitive to the size of the inventory, we shall spend
more time considering the case where inventory for test has no
tactical mission.

A long string of heads or tails when flipping pennies is not
impossible or even incredible; but after some number, one is entitled
to wonder if the coin is biased. Similarly, when testing a missile
which is alleged to have high reliability, a string of failures--even
a short one--challenges the presumption; contrariwise, a long string

of successes tends to be uninformative. In either case there is a
practical limit to the value of the additional information in an
outcome merely extending such a string.

* To address this problem we shall invoke the discipline of
Sequential Analysis, to include Sequential Probability Ratio Tests
and test series truncation. Much of this is "old hat", having been
developed in World War II, most notably by Abraham Wald (Reference
11) working on military problems, and largely standardized by now.
It has recently been reported that the methods were independently
developed simultaneously by Alan Turing while working at Bletchley
Hall to crack the German ENIGMA codes (Reference 12). More
importantly there is recent substantive new work not yet "codified"
in text books. Two applications of sequential analysis to the
Pershing missile test problem will be presented: one by Nozer

SSingpurwalla and Robert Launer (Chapter III) and one by Michael
Woodroofe (Chapter IV). While aspects of the treatment will appear
more "frequentist" than Bayesian, both evolve into completely
Bayesian solutions. In this paper I shall extract from their work,
and comment on it as appropriate. The author of this memorandum is
not by profession a statistician, and so requests that the original
researchers not be blamed for errors in translating their work into

0 this format.
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Chapter III

-v Launer and Singpurwalla's Proposal

The following submission by Launer and Singpurwalla is the
product of over a year of research by the authors, initiated and
guided in discussions with the writer of this note. I believe it
successfully addresses the problem placed before the authors. Note
that all the appendices to this article are to be found at Appendix
E.

As the numerical example in the following exposition employs
fictitious data and arbitrary values of the parameters r t a
the numerical results should not be taken as applicable to the
Pershing II problem. The dependencies and the savings from

'- sequential analysis are however clearly indicated, the penalty when
tests are batched, and the potential for squeezing information out of

*Q small samples. The next chapter reports further steps toward savings
through careful test design.

"lk
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MONITORING THE RELIABILITY OF PERSHING II MISSILES--
A CRITIQUE OF THE CURRENT METHODOLOGY AND A SUGGESTED

COMBINED BAYESIAN-SAMPLE THEORETIC APPROACH +

by*

Robert Launer*
Nozer D. Singpurwalla**

1. INTRODUCTION, TEST REQUIREMENTS, AND ASSUMPTIONS

0 The reliability of the Pershing II missile arsenal is an unknown

parameter which presumably could change over time. To monitor the re-

liability, and also to ascertain the amount of change in reliability,

if any, a sample of n Pershing II missiles is chosen from the ar-

senal every year, and each missile fired to observe its success or fail-

ure. The testing is destructive, and the arsenal inventory is not

replenished. Thus, it is highly desirable to reduce the number of test

missiles fired year after year. Also, if possible, it is desirable to

have the total number of missiles fired'per year be a multiple of three--

that is, 3, 6, 9, etc. A stated requirement with respect to the year by

year detection of change in reliability is that a change of 6 should

be detected with a probabiZity of r or more. Since the test data are

+ The authors' appendices are incorporated in this paper as Appendix E. DW

U.S. Army Research Office, Research Triangle, N.C.

George Washington University, School of Engineering

and Applied Science, Washington, D.C.



2

of a pass-fail nature, a correct probability model for describing them

is the binomial.

Our goal is to determine a sample size and a decision criterion

that will satisfy the above requirement, and minimize the total amount

of testing. Since each missile is expensive to produce and test, there

is a keen desire to incorporate into the analysis all knowledge that is

available, both, from the Drevious tests and engineering experience.

Thus a Bayesian point of view is natural here.

2. CRITIQUE OF PRESENT METHODOLOGY
0i

Based on our reading of the pertinent literature that has been

made available to us, and our discussions with several people familiar

with the test, it is our understanding that the current methodology for

analyzing the Pershing II data is based on Fisher's exact test, hence-

forth FET. We claim that this technique is inappopriate for the situa-

tion described above. Furthermore, a modified version of the FET which

has been used in similar situations is not appropriate, either. Whereas

the FET can be used to detect the equality or otherwise of two binomial

populations, it is not designed to detect a specified difference between

the two binomial parameters in question. Furthermore, FET does not ad-

dress the key question of sample size selection, and thus fails to ans-

wer the main question posed by our problem. A choice of the sample size

should be based on an assumed or target value of the reliability, and

this is nowhere apparent in the test.

Given a sample size and the test results from this sample, the

FET can give us the "p values" for deciding upon the difference or

Ot
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otherwise of the two binomial populations in question, and this may be

the sole motivation for using this test here.

3. THE COMBINED BAYESIAN-SAIMPLE THEORETIC

APPROACH PROPOSED HERE

Our proposed approach addresses the issues posed before, and

attempts to do this in an economical manner with respect to sample size.

Since reliability changes over time, we introduce an index t

where t = 1,2,... ; thus t = 1 denotes the first year of testing,

t = 2 denotes the second year of testing, and so on. Let nt denote

the number of missiles to be tested in time period t ; nt is the

(unknown) sample size, one of our decision variables. Let xt denote

the number of missiles that fire successfully in time period t

note that 0 4 x < n .t t

Let Pt be the chance that any missile fired at t will fire

successfully, or its propensity to do so. Since pt is unknown to us,

we express our uncertainty about it by a probability distribution, say

g(pt I previous failure data, if any, and H) . Thus Pt is treated as

an unknown parameter, and the vertical line in g(.) denotes conditioned

upon or given, and H denotes our background information about Pt

If we have no previous failure data, then g(Pt I H) denotes our prior

distribution for Pt ; otherwise g( I ") denotes our posterior

* distribution.

If for each time period t we judge the missiles in the arsenal

to be exchangeable (we have here finite exchangeability), then it is
at

_ appropriate to assume that given Pt , the probability of observing x

. 7



successful firings in a sample of size n is a binomial distribution;

that is,

' ntj px t  ptnt-xtP{x successes in n firings I p t t) Pt (1 - ) (1)
t# sucse in t  xt

The choice of the sample size n t  is based on the following sample

theoretic arguments for testing hypotheses about Pt "

If Pt , the chance that a missile is fired successfully at time

t , is large, then the number of failures in a sample of size n t would

R tend to be small. Given an n t and having specified a p , let x*
t 't

be the largest integer for which the chance of observing x* or fewer
bt

successes is small, say a ; that is,

mhr"• " X*n -Ptx* or fewer successes in n t  p = [ t (1 - p)t ( a

(2)

If pt were to change to pt - A , with A large, then the num-

ber of failures in a sample of size nt would tend to be large; if A

were small, the number of failures in n t would tend to be small. Thus,

for some small number ,

P{x* or fewer successes in nt firings (P -
tt t

X= nt (Pt _ A) j (I _ Pt + Z)ntj (3) S

J-0-

If in (2) and (3) we assume that pt , a , and A are the

only known quantities, then (2) and (3) can be simultaneously solved to

obtain an nt and x* . Once this is done, (2) can be used to test the
t t

null hypothesis that the reliability of the missile arsenal at time t

, S
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is Pt , with a Type I error a . This is done by accepting (rejecting)

the null hypothesis whenever x >(<) x* , where x is the total number
t t

of successfully fired missiles in a sample of size nt . If a = .25

and B .25, then (3) assures us that nt  and x* are suitable for
C C

detecting the desired changes in reliability. Note that (3) describes

the power of the test as specified by (2), for changing values of 6

If the null hypothesis is accepted, we conclude that the reliability of

the missile arsenal at time t is Pt

In our case pt is not specified, as it is an unknown parameter

which is liable to change over time. What we have instead is

i. a prior distribution for Pt at time (t-l) , say

g(P (nl,x2 ), (n2 ,x2), .. , (ntiXt2, H) , t ; 2 and

g(p H);

ii. a posterior distribution for pt at time t , say

g(Pt I (n,x ), .'., (nt, x), H), for t ;?:.

Thus, if we uncondition on pt (2) and (3) would become

I Pt (I ( P)t g(Pt I (nX), (ntxl,xtl), H)dP t < C

for t> 2 ,and

S t pJ (I-p t g(P, I H)dpI < a , for t = 1 (4)

J1O tj (Pt - A ) J ( ! - p t + A ) tj g(Pt (n., , x l ) , . . , ( n t-l ,x t- l ) Hd)dP t

;1- , for t 2

A- Ak, ??. t
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and

I t (pt A)j(lp t+A) t g(plI H)dp I > I - , for t 1
j=O

(5)

In order to obtain the pair (n ,x*) , for t > 1 , we need to
9 t t

solve (4) and (5) simultaneously. Note that a solution to (4) and (5)

would depend on our choice of g(ptI .). If for example, g(pt I ) is

a member of the family of beta density functions, then (4) and (5) would

involve incomplete beta functions and would call for numerical methods

for solving them. A method for undertaking this is described in Appendix

A. A computer code for implementing the method of Appendix A is given in

Appendix B. An example using the above is in Section 5.

As an alternative to the above, and one which is easy to imple-

ment, we replace pt in (2) and (3) by Pt the modal value of

g(Pt I (n1 ,X1 ), .I., (ntlxt-1 ), H) . The modal value is the most

likely value of Pt , given all the previous data, and is determined by

the prior distribution g(Pt (nx I ), , (n tlXtl, H) . The

posterior distribution g(Pt I (nlxl), "--, (nt,xt), H) represents our

best assessment of the arsenal reliability at time t , given all the

data up to and including that obtained at t . Its model value Pt

could be used as a single number which describes Pt " In the next sec-

tion, we discuss an implementation of the above alternative procedure.

An implementation of the main procedure follows along similar lines,

with the exception that in computing the pair (nt,x*) Pt is not
t t

replaced by the modal value of its prior distribution.

9 :M
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%

3.1 Assessing Our Uncertainty about Pt and Procedure Implementation

Since p can take values between 0 and 1, a convenient but

flexible way for us to express our uncertainty about pt is via the

family of beta density functions on (0,1). Thus,

1. We start off our assessment and monitoring procedure by

assigning a prior distribution for p1 , say g(pll y,6,H)

which for the two unknown parameters y > 0 and 6 > 0 is

a beta density function
Iir(y+6) Y-1 6-1

g(p 1
7 6,H) = r(y)r(6) Pl (1p) 01 < Pi < 1 (6)

The modal value of the above density is
- = y-i

Pl -y+6-2

Clearly, p1 best describes in the form of a single number

our assessment of l prior to testing at time t =1.

Furthermore, p is also to be used for determining the pair
1

nI and x* , for testing at time t = 1

2. We thus replace Pt by pl in (2) and (3), and simultane-

ously solve these to obtain n and x . [In Appendix A

1 1'we discuss how to obtain n I and x* without using p.

and by directly solving (4) and (5).]

3. We take a sample of size n1  and test these to determine xi ,

the number of missiles that fire successfully. If x1 >(<) x *

we accept (reject) the hypothesis that the reliability of the

missile arsenal at time I is P1

4. If we accept the above hypothesis, then we update our opinions

•
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about p1  in light of n1 and x via the posterior

distribution g(pi J (n,,x,), H) The modal value of this

posterior distribution is
-'S y+ x i-li

P 1 Y+6+n -2'

and this number best summarizes our assessment of p1 after,

testing at time 1. We now go to step 5.

5. If the aforementioned hypothesis is rejected, our choice of

y and 6 needs to be revised. This should be done follow-

ing a more detailed analysis about p1 " We then go back to

stage 1.

6. The posterior distribution g(pl I (nl,xl), H) now serves as

- the prior distribution for P2 , and its modal value -, is

set equal to p2 * Thus

Y+xI-1

P2 = y+6+nl-2 

and Pt is now replaced by P2 in (2) and (3), which are

solved for n2 and x* [In Appendix A we discuss how to

obtain n2  and x* by directly solving (4) and (5).)

7. We now repeat the steps 3 through 6, and continue the above

procedure. Thus, at time (t-i) we have

Y + xI + x2 + ... + xt-
Pt-I ;t ' y + 6 + n1 + n 2 + ... + nt_ 2

as our single best assessment of the reliability of the arse-

nal at time (t-l), after observing the results of the test at
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V.
* time (t-1) It also represents our choice for Pt in

equations (2) and (3), for determining the sample size nt

and the decision variable x*
t

8. Suppose that at time t , we test n items, observex

successes, and based on this result, reject the null hypothe-

%; sis that pt = pt = Pt-I Then we conclude that the reli-

,% ability of the arsenal has changed from its previous value

Pt- When this happens, we investigate the cause for this

change, choose some new values, say y' and 6' , and

%estimate Pt by

0W Y9+xt-l

Ft y '+6'+n -2
t

We now continue as before, bearing in mind that the previous

date (ni,x) ... , (nt-iXt-l) are no more appropriate for

inclusion in our assessment process.

An alternative to the beta prior which has properties of robustness

is currently under investigation. However, there is no assurance that

V the alternative prior will be void of computational difficulties.

3.2 Sequential Sampling to Reduce the Amount of Testing

At any stage t , given an n t and x* , a further reduction

in the amount of missiles tested can be achieved if the testing is done

sequentially, one item at a time. Specifically, we would test one item

at a time; and stop the test as soon as x t  the number of successes is

larger than x* Thus, ideally, the number of missiles tested could be
t

I tV

~\~ -** ~~VV
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as few as x* + 1 , this implies a saving of nt - x* - 1 The ma'i-
St t

mum of missiles tested would of course be no greater than n . The
It

resulting sample size, that is the number of missiles actually tested

at each stage is known as a curtailed sample.

For the above scheme, given pt we can compute E(ntjpt) the

expected number of missiles tested using standard arguments--these are

shown later. However, since Pt is not known, we average out Pt

with respect to its prior distribution to obtain E(n t) , the un-

"N: conditional expectation of the number of missiles teited at each stage

under the sequentially taken curtailed sample. This is shown below.

4 Given n t  and x* , the probability that n t = x , when a
t t

sequential sampling scheme is used is

x-1 n-x x-(n x*)

1  t X* < X < X

nl-Pt) Pt , t t - t

+ 1nt-*- l
P . ... _ 1 Jp x-inX*

€~~ ~ t~txt  -- Pt nt I-( t)

+.. F x-*t-i (1-pt)t Pt x* < x < n

In order to obtain P{nt=x , we average out the above by g(ptI) ,

w' where

g(Pt '  10+ Y(-16)P (1-Pt)6-1_r(Y+6) Y-l
retr6 Pt (lp

% . .~. .

%
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When the above is done, we have

x-1 (y+) r(x-n +x*+y)r(n t X*+6)

rr (y+ +x)nt-x*-_I  r( ) r (6) r (Y+6+x)

for nt-x < x < x*
-~ t t= t

P[nt=x] x-1 +6) r(x-nt+x*+Y) (nt-x*+6

r(y)r(6) r(y+6+x)

+ r(y) r (6) r (y-+6+x)

* for x* < x < n
t t

from which E(nt) can be computed. The above formula can also be used
t

to plot a histogram of the various values of n , for each stage t

If the sequential tests are to be done in batches of 3 rather

than testing a single item at a time, the savings in the number of items

tested will be less. However, this is still better than compulsarily

testing all the n t items. We do not have a general formula like (9)

above to compute the expected sample size. The calculations will have

to be done on an enumerative basis. These are shown in Appendix C.

Mih
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4. CO IENTS ON THE PROPOSED APPROACH

The proposed approach is a combination of sar.ple theory and

Bayesian statistics. The former is used to determine the sample size,

and the latter is used for inference about pt One may express reser-

vations about a procedure in which two philosophical viewpoints are used

'" simultaneously. However, upon closer examination of the approach, such

-e a concern should be dispelled, since the sample theory approach is not
used for making inferences about Pt ; it is used for choosing a sample

size. The selection of the sample size after averaging out Pt with

respect to its distribution g(pt I ) , see equations (4) and (5), makes

our analysis fall under the category' of what is known as pre-posterior

analysis, a perfectly legitimate device within the Bayesian paradigm

5"' (cf. Box (1982)].

The monitoring of Pt is done within the Bayesian framework,

K' and besides "coherence" it has the advantage of inducing economy by

virtue of the fact that all our relevant previous data are incorporated

into the analysis. Furthermore, it allows the incorporation of any

P'Se engineering or judgmental knowledge that we may have about the missiles

into our analysis -- this is done via the parameters y and C or

y' and 6' , etc.

5. APPLICATIONS TO DATA

Our proposed approach is designed to specify a sample size for

testing at each stage, and thus its effectiveness cannot be fully ap-
.

preciated if we apply it to existing data. However, we shall apply it

-~~ ~V %. ~'~S '
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to some given (sanitized) success failure data to demonstrate the fact

that the computations of Appendix A can be undertaken, and to compare

the results of our main procedure and the simplified alternative, de-

scribed in Section 3.1. In Table 1, we present the given success fail-

ure data, our Bayesian estimate of the mode of Pt at each stage using

a uniform prior distribution at stage 0 updated at successive stages

using failure data, and the values of x* and N using the main pro-
t t

cedure and the alternative.

A few facts emerge from an examination of Table 1.

1. A large number of items to be tested is called for, when0

the prior is uniform, with mode .5

2. The number of items to be tested is the smallest when the

mode of Pt is closest to 1, namely, at .9

3. The number of items to be tested under the main procedure

is always equal to or larger than that under the alternate

procedure. This is because the alternate procedure puts all

the probability mass at the mode, whereas the main procedure

. disperses the probability mass over [0,1] , with a concen-

tration at the mode.

5.1 Results of Curtailed Sequential Sampling

The sequential sampling approach discussed in Section 3.2 was

applied to the data and the results of Table 1. The nt and the x*

values considered were those given by the "alternative procedure"; this

procedure gave us smaller values of the n 's than the main procedure.

t

I' -
-I
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TABLE I

Results for Main Procedure and Alternative, Using Sanitized

Data, and Assuming a Uniform Prior at Stage 0

Computed Values of x* and n
SaeData Moet t

Stage Mode Main Procedure Alt. Procedure
t of Pt

Success Failure t
t t t t

0 .500 2 29 5 17

"r 1 6 0 .875 8 13. 9 13

2 11 1 .900. 10 14 8 11

3 11 1 .906 11 15 8 11

4 11 1 .909 8 11 8 11

5 9 3 .875 9 13 9 13

6 9 3 .853 10 15 8 12

7 8 4 .825 9 14 9 14

8 4 0 .833 11 17 9 14

9 3 2 .820 10 16 9 14

10 9 0 .837 10 15 9 14

11 8 1 .841 10 15 10 15

12 7 2 .836 10 15 9 14

13 9 0 .848 10 15 8 12

0. 14 7 1 .850 10 15 8 12

-p2

6~
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The expected sample sizes when testing is sequential, in batches

*of 3 as well as one item at a time, were computed. These are shown

in Table 2. The advantage of testing one item at a time is clear

from an inspection of columns 2 and 3 of Table 2.

We also note the overall reduction in sample size using the approach

of this paper. The expected sample size can be as small as 9.

The detailed calculations leading us to Columns 2 and 3 of

Table 2 are given in Appendix C.

A 6. PROPOSED FUTURE WORK

An objectionable feature of, the proposed procedure, from a

Bayesian point of view, is the testing of hypotheses about P

using the decision variables x* , t = 1,2,.... The proper Bayesian
t

way to study this problem would be via a Kalman filter model which

contains two unknown states of nature, Pt and m , where m denotes

the drift in pt . The Kalman filter would not only have the ability

to monitor the reliability of the arsenal, but would also provide us

with a vehicle for predicting the future arsenal reliability. The

following are our ideas on how a Kalman filter model for this problem

can be developed.S

Let Yt denote some transform of x t/nt , and one which makes

Yt approximately normal. The observation equation for the Kalman

0" filter model would be

Yt = Pt Y it

where y' is a disturbance term with mean 0 and variance 
lt

We can postulate the following as system equations:

Pt = m + Y2 t and

mt = m t-l + Y3t
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TABLE 2

Expected Sample Size for Curtailed Sequential Sampling in Batches of

Size 3 and Size 1.

Stage Expected Sample Size Expected Sample Size
t for Batch Size 3 for Batch Size 1 x* ntt

0 11.84 10.91 5 17

1 12.03 10.66 9 13

2 10.29 9.45 8 11

3 10.37 9.51 8 11

* 4 10.40 9.54 8 11

5 12.28 11.08 9 13

6 11.07 10.16 8 12

7 12.84 11.74 9 14

8 12.79 11.69 9 14

• 9 12.87 11.78 9 14

10 12.78 11.67 9 14

11 13.59 12.72 10 15

12 12.78 11.68 9 14

13 11.14 10.22 8 12

112

141.4 02 8!1
Ii
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In the above equations, we are saying that pt I the unknown state of

nature, consists of a low frequency drift term mt , which represents

a smooth variation in Pt , and y2t , which is a high frequency compo-

nent that represents drastic changes in pt We assume that y2t is
2

a normal variate with mean 0 and variance a2t The drift term is

assumed constant, except for slight disturbances in it; these are

described by y3t . which is also assumed normal with mean 0 and vari-

2
ance 0 3t

The Kalman filter solution would result in uncertainty statements

about Pt and m , via their distribution functions. These, of course,.t t "

would be conditioned on (nX 1 (nt xt  Large values of mt

would indicate a drift in the arsenal reliability, and so m could be
,.t

used to monitor the change in the arsenal reliability.

It appears that the Kalman filter solution would have several

advantages over the proposed approach. The problem of choosing n in

the context of a Kalman filter is an open question, and this calls for

some basic research, assuming that this has not been done before.

A third possible direction for future research is the development

* of a sequential procedure for testing the missiles. A sequential proce-

dure employing Bayesian considerations may add a further dimension to

this problem.

0

OI
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Chapter IV
Woodroofe's Proposal

The proposals of Michael Woodroofe are not yet formally
documented, but are contained in a series of letters and lecture
notes (References 13-17). In this chapter I shall mostly quote from
this material with the author's permission, noting that any published
versions may differ markedly from those given here. I acceptN!- responsibility, however, for the accuracy of the material quoted and
the interpretations and extensions of it.

All of the calculations described in this chapter were carried

out by Dr. Woodroofe and/or myself. I have programmed most of them

for an HP-41C, and listings are given in Appendix D. Instructions
-. and copies on magnetic cards are available. Dr. Woodroofe has used

an Apple computer.

Section 1. (Extract from Reference 14).

The Truncated Sequential Probability Ratio Test.

Illustration with a sequential test of the type of savings
which are possible and the loss of information which results from the

savings. Note that the process starts with the conventional
Uniformly Most Powerful test, to be terminated when a specific number
Sn of failures has been observed; or when, out of a planned test of
size n, the number of observed successes assures that the number of

1 ailures cannot reach Sn; or after n tests if not terminated earlier.
The choice of n is at this time arbitrary; the value 12 was used in

the example to permit comparison to the Pershing test program, past
and planned.

Se
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/We start with a discussion of! the problem of sequentially testing
/such that/ that a failure probability does not exceed a given level. I wi

illustrate the type of savings which are possible and the loss of infor-

mation which result from the savings with a specific example.

LetlX , X be I.I.d.Ir-random variables which take the values
I and 0 w1t4 probabilities p and q - I-p , where 0 < p < . , Is
unknown; and consider the problem of testing

H : p < .15

Let Sk "l +  + Xk I < k < 12

Then the (UMP) test which rejects H if and only if S has power
function o

(...1) -0o(P) I 1 - , 0 < p < I
."k -

Of course, it may not be necessary to take all 12 observations to determi
whether SI2 >.4 . The test may be curtailed at time

t- min{k > 1: Sk > 4 or Sk i k-9).

Then

..
(2) E p(t o0 ) - k1:4k pq

• ,+ I k(8 q9 p ,

k=9

* Identically and Independently Distributed.
•* Uniformly Most Powerful.

-p

O1

W4 
t;4~



Seece vlusof0() an n I)ae ise i clmn

is the expected sample size of the curtailed test.

Selected values of 13o (p) and E p(to0) are lI sted In columns 2

and 14 of Table 1 below.

Observe that the type I error probability is .0922 when p - .15 an

the type II error probability is .2253 when p - .4.

I tried to construct a truncated version of the SPRT whose power
function matched 1 as closely as possible. Wald's approximations

allow one to match the power function at two points. I picked .15 and
.40. Wald's approximations then give formulas for the upper and lower

stopping boundaries In the (k, Sk) plane. These are listed In columns

2 and 3 of Table 2. There are two problems with these boundaries: Wald'
approximations tend to overestimate the error probabilities;.and I wanted

the test to take at most 12 observations. After some experimentation
with formulas (3) and (4) below, I was led to the upper and lower

*, boundaries listed in columns 4 and 5 of Table 2.

Thus, I considered the sequential test which takes

t - min{k > I: Sk< ak or Sk- bk)

. observations and rejects H If and only If S
bk  are as In Table 2. 0 t -t 

k

p( The power function and expected sample size may be easily computed.

'Let

fk(j,p)- Pp{Sk-J t > k

for k - 0 , ... , 11 , j - 0, 1, 2 -... , and 0 < p-< I . Then the
power function and expected sample size are

0 (p)- 1Z f (bk- p) * p
k-i k-I 

and
12

,I E(t) - E k{fk-l(b l1, p) p + fk-llak, p)q
k-I

0 for 0 < p < I . Thus, one need only compute the values of fk ; and thil
Is easy In view of the Initial conditions, f (O,p) - 1 and

f0(jp) - 0 for J i0 0 , and the recursion

(5) fk(JP) 1P fk-l(J-Ip) + q f k1000)] lak < J < bk)

a.

..: ,.

V,
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'-\jor k- I , ... , 12 , J - 0, 1, 2, ... , and 0 < p < I . Here IA
denotes the Indicator of A.

The power function and expected sample size may be computed from
(3), (4), and (5). Selected values are listed in columns 3 and 5 of
Table I.

Observe that the power functions a 0 and $ differ by at most
.0103 for the values computed. This is much better than I had
expected when I began the exercise. Observe also that the expected
sample size of the modified SPRT is substantially smaller than that of

*the curtailed test when p is small.
-'a.,

._ After the test has been performed, one may set confidence limits
for p by using the relationship between tests and confidence Intervals.
Order the possible outcomes in a clockwise manner, as in column I

_ of Table 3. For each r , 0 < r < I , one may test the hypothesis

Kr  p > r

as follows: the acceptance region A(r) of the test consists of an
* Initial segment of outcomes, In the order of Table 3; one Includes

precisely enough outcomes to make

Pr (A(r) ) > .90 *

Then, after the test has been performed, an upper confidence bound p
, for p may be obtained from the relation

p < p* iff (tS t ) c A(p)

This is essentially the approach of Siegmund (1978, Biometrika), but
substitutes exact calculations for his approximations.

I list some approximate 75% upper confidence bounds for p in Table
These were obtained by linear Interpolation with formulas like (3).

To the extent that the modified sequential test takes fewer observa-
tions than the curtailed test, one may expect less accurate estinfation of

i".



Table 1: Power Functions and Expected Sample Sizes

0o(p) (P) E p(to) E (t)

.05 .0022 .0022 9.47 6.93

.10 .0256 .0251 9.92 7.85

•15 .0922 .0899 10.23 8.62

.20 .2054 .2004 10.140 9.13

, .25 .3512 .3431 10.31 9.35
.30 .5075 .14975 10.02 9.30

.40 .7747 .7644 9.00 8.57

.50 .9270 .920A 7.77 7.42

Here: Column I Is computed fron (1), column 2 from (3), column 3
from (2), and column 4 from 14.

Table 2: Upper and Lower Stopping Boundaries In the (k, S k- Plane

The SPRT Modified

.. k. ak bk ak bk

1 -l 2 -
1 3- 3

11 2 -1 3 3

3 -1 3 -1 •3
4 - 3 -1

* 5 0 3 -I

6 0 4 o 4
7 .0 0

8 1 140 4

5 1. .4 1 14

10 1 5 1

11 1 5 2

12 2 5 .3

Here columns 2 and 3 are from Wald's approximations; columns 4 and .5
are ad hoc approximations.

S t q q j m ' i"1 u 'q ' ' .' u " . " , ," , -,-



Table 3: Approximate 75% Upper Confidence Bounds

Outcome Confidence Bound

, ,t St

3 3

5 4 .91
6 , .70
7 4 .61

'V8 4 .55
9 4 .5
,..4 .45
. . 4 .4 2
12 4

12 3 .34

11 2 .29

9 . .21

6 0

.I0p
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Co-ment. by D:

As indicated in Chapter III, expectations of and E can be

* computed based on a prior probability distribution. Closed-form
solutions exist for p-,o and Ep(to) for a Beta prior, among others.

For "(p), and Ep(t), numerical integration is necessary. Other
indices derived from the fk(j,p) in manners like that for U' or E(t)

can also be meaningfully be averaged over a prior distribution. As
Fp(t) has here a narrow range of variation, its expectation value
uill not be very sensitive to the choice of the prior distribution.

.C
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- Section 2. (Extract from Reference 15).

To clarify some of the points raised in Section 1, Woodroofe
provided a more extensive treatment of the development of the limits
on observed successes and failures at which the test is terminated.
it begins with the method described by Wald (op. cit.) and then
continues with a procedure, somewhat judgmental, for modifying those
boundaries to reduce the expected size of the test while retaining

* its power.



1) Testing HO: 0 > .15 is the sare as testing 6' = 1 -0 ' .85. If
you want to have

P(decide 8' > .85) < no for 0' C.85

*. and

Pe{decide e' < .85) 4 "1 for all 6' > 0' > .85,
1

where no and al are small and .85 < 8' < 1, then you cannot simply reverse the

roles of zero and 1 in the test described in my earlier letter. A new test
must be coristructed. See (2) below.

In /_ection 17 0 was the probability of a system failure.

42) For testing Ho: 0 C 00 at level no with type II error at nost al
when 0 > 01, where 0 < 0o < 81 < 1 are specified, -the SPRY continues sampling
as long as

I/A < Ln < B

where B = (l-al)/a0, A (l-a0 01, and Ln is the likelihood ratio. One finds

0% A

I
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Ln =exp {AS-, n AD)

where

Al = log 91(l-00) - log eo(l-e 1 )

A0 = iog (1-6 0 ) - log (1-01)

and Sn = X1+...+Xn, n > i.

"' .1Since Sn are integer valued, equation (*) may be. rewritten
an < Sn < bn

::; : a =  I(nAO  log A)l
0n A 0

1

b [nA 0 +log B) + I

where Ix) is the greatest integer which is less than or. equal to x.

Suppose now that one wants the test to be truncated at M say. Then one
wants boundaries an and bn, 1 - n (1M. W-at I did in the example was the
following. Let aM and bM be such that

aM( - aM~bM-1andbN 4 N

* say two integers near the middle of the interval frcx am to b.. Then let
an -max (an a- (M -n)l

and bn = in {b b}

fo n < M. This gives a first approximation to the boundary. In the examp
I then omputed the power function of the sequential test with boundaries ar,

• "and bn and opared it with the power function of the fixed sample size test
*- I then changed a few of the boundary points to get better agreement between

the two power functions. The adjustments were minor and tended to make the
.continuation region fatter.

The reason that you can't pin me down on the adjustments is that it is
trial and error operation.

e.
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,ri,(3) In the example,

eP (t-k,Sk = bk) = fk-i(bk - 1;8). B

~and
v P8 {t-k,Sk = ak) = fkl(ak;B)- (1-8)

Then Pe{Xt > x) is the sum of these probabilities over all pairs (k,ak) and
(k,bk) for which ak/k > x or bk/k > x.

4) For inverse sampling there is just one boundary. Fbr curtailed
Nsarpling, there are two. Iet

t + =minfk > 1: Sk > 4)

,'."t- m- n~k > 1: k - Sk  > 91

Then E(t) = 4/8

"" an E(t-) = 9/(1-8)

The stopping time for the curtailed fixed saaple size test is

to = min(t+,t- )

When e = .15, 4(t-) = 10.6.

The formulas for E 0 (t + ) and E(t-) hold for all 81 0 < 8 < 1.

5x1 Ithink of the boundaries as a modified S.P.R.T. In t he• examle," they were similar to the curtailed fixed sample size test, but

Xsufficiently different to reduce the expected sample size by about I over the
range of interest.

60) The calculations in my letter to Launer are for fixed 8. To do
a Bayesian calculation, one ould average them over a values

The formulas which I gave for computing the power and expected sample
implicitly assume that that the boundaries an and bn are non-decreasing in n.

.-M



ISection 3 (Extract from Reference 16).

~The Truncated SPRT, Aggregated over Several Tests.

~Derivation of a conservative estimate of the probability
~that in 10 years of testing, at 12 missiles planned for expenditure

each year, no more than, say 100, will be needed using the proposed
. stopping rules.
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This is to explain how savings in expected sample size may be
translated into savings of units which must be purchased prior to the
experimentation. Fbr definiteness, I illustrate the method with the . ...
truncated SPlu, which is described in; Section T - ....

in particular, recall the czrputiation of

(30 f(k,j;p) = PR(T>k,Se=j),

where p denotes the true failure probability, Sk denotes the number of
failures after k units have been tested, and t denotes the stopping time.
From this, one gets v

G(k;p) = Pr(T'k) - I - j=0 f(k,j;p)

and g(k;p) = Pr(T-k) = G(k;p) - G(k-l;p)

for k - 1,...,12 and 0 < p < 1.

* Suppose that the truncated SPRr is run n times, say once each year
for n years, where n is a positive integer. Then there will be a sequence
Pl,'"",pn of unobservable true failure probabilities and a sequence t1,...,
of random sample sizes. Here I regard Pl,""- ,Pn as unknown parameters, and
suppose that tl,... ,tn are independent random variables for which

Pr(ti=k) = g(k;pi)

for k ],...,12 and i = i,:..,n. If PJ,"".,Pn are really randcm variables
then the calculations described below are valid, if the onditional distri-
bution of tj,...,t n given P"'" .,pn is as just described.

&W17S
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Let T denote t),= total number of units used during the tests,

T = tl+---+tn-

Then the distribution of T is required. The dist) ibution of T is the

convolution of the individual distributions of tl,... ,tn . This depends

or, p... p in a omplicated manner, but it is possible to find the sharp

bound which is valid for all possible choices of Pl,---,Pn" That is, it is

possible to find a function H for which

K: Pr(T'k) > H(k)

for all k = 1,...,12n and all possible choices of Pl,"""',Pn-

- I descr be the derivation below,

f.. values of H ar included in Table 2 in the special case that
10. Cbserve that then -

* Pr(T > 105) < .054

for all Pl"'" ,Pn- The bound is reasonably sharp, since Pr(T>105) = .050

when all of Pl'-",Pn Dre equal to . 27.

While the bound is sharp, the approach is conservative, since it

ignores data from previous years and assumes the worst possible values for

Pl,". ,Pn. If an independent verification is required for each year, then

sane of this conservatism may be unavoidable.

The derivation of the bound uses the notion of stochastic dominance.
If X and Y are random variables with distribution functions F and G, then Y
is said to be stochastically larger than X if and only if G(z) < F(z) for

all z. If X and X' are independent random variables and Y and Y' are

independent random variables and if Y and Y- are individually stochastically
larger*a9 X and X', then Y+Y' is stochastically larger than X+X' (as is

easily verified); and this result extends from two summands to several.

* To apply this result, let

G(k) = min G(k;p),

where the minimum extends over 0 < p c I. Then, for any choice of Pi,-- -Pne
the distribution of T is stochastically dominated by the sum of n independent

O.0 random variables having common distribution function G. Ccimputing G is
straightforward. For k < 6, the minimum is attained when p = 0 and G(k) = 0.
For k > 6, I computed G(k;p) for a grid of p values and took the minimum over

5/ this grid. The values nre listed in Table 1. I used a grid width of .01.
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-*"TABLE 1. Values of G(k;p)

p k= 6 7 8 9 10 11

.24 .2313 .2590 .2966 .5032 .5556 .7723A

.25 .2222 .2535 .2955 .4967 .5537 .7685

.26 .2144 .2496 .2962 .4923 .5538 .7661

.27 .2081 .2474 .2987 .4900 .5559 :7651

.28 .2032 :2468 .3030 :4897 .5599 .7654

.29 .1996 .2477 .3088 .4914 .5657 .7669

.30 .1974 .2501 .3163 .4949 .5731 .7696

.31 :1964 .2540 .3252 .5002 .5819 .7735

7 .32 .1967 .2593 .3355 .5072 .5922 .7783

.33 .1981 .2659 .3472 .5156 .6036 .7840

.34

.35

Minimum .1964 .2468 .2955 .4897 .5537 .7651 ,o
Al

Mean and St dev p 9.4528 - = 2.1992

-12 - I- b A .4:"~~ Z%- - (*cc),, _4, : d)4- 1-,I) A- C' ,- .- &-t -,) (7 1c-,

Notes: G(12;p) = 1 for all 0 < p < 1; the minimum is zero for k ( 5; pand a
are the standard deviation of the minimizing distribution.

0.,
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TABLE 2. Values of H

k 1 - H(k) H (k) - H (k-1)

100 .2026 .0460

101 .1622 .0404

102 .1273 .0349

103 .0978 .0295

104 .0734 .0244

I105 .0537 .0197

106 .0382 .0155

*107 .0263 .0118

108 .0175 .0088

109 .0112 .0063

*110 .0069 .0043

i11 .0040 .0029

112 .0022 .0018

113 .0012 .0011

114 .0006 .0006

115 .0002 .0003



Comments by DW:

Let g(k) = G(k)-G(k-l). 4.1

Then d(n,z) = r zg(n-k) 4.2

is a generating function of the distribution g(k). The generating
function for the dominant of m years' test results is then

4.3

J..=

and the dominant of the probability that a specific number J of tests
can be forgone is given by the coefficient dJ of zJ in the expansion
of D(n,m).

In our example n=12, and the g(k) for k < 6 are all

zeros. Sample data are given in Table 3. So, for m=1O,

-D tZ_,o = 4.4

L~Gz) 3~(" -q-. -o~ ~- 2:' I~+ (7) -+-'(C5

0 G(, -4- (D1 0, 0

0
1%



TABLE 3

g(k)

P =.85 P 7

Batch Size Batch Size

k 1 3 1 3

12 .2349 .5103 .0940 .4433
11 .2114 0 .1258 0
10 .0640 0 .2235 0
9 .1942 .2933 .1694 .3604
8 .0487 0 .0361 0
7 .0504 0 .1549 0
6 .1964 .1964 .1-963 .1963



In Woodroofe's notation

In particular, in our case,

' is the dominant of the probability that all 120 are required (none
a,'. can be foregone). It follows that

Ls the dominant of the probability that at most J can be forgone; the
generating function for eJ is

00 ;a

The calculation of the dJ or eJ presents no difficulty except
possibly in the control of round-off errors for J large. Sample
results are given in Tables 4 and 5 partly repeating material.in
Table 2, with differences presumably due to differences in accuracy
between our computers.

In actual conduct of Follow-on Tests, three failures in a row,
or two with an identifiable cause, would be sufficient justification
for halting the test until the problem were (identified and) fixed.

AL There would then remain some number of missiles from that year's
allocation available for intensive investigation of the fault and for
demonstration of remediation. It is not clear that any additional

1". missiles would need to be allocated to those missions, as they could
serve the FOT mission at the same time.

It is a trivial matter to revise the expression for D(n,m) to
* treat the case of batched tests: for example, in groups of 3.

Tables 3-5 compare the results for single and triple tests. For the
data in the example, whatever the number of missiles considered an
adequate inventory for 10 years' testing without batching, about 6-10
.ore would be required when fired in batches of 3. The analysis in
Chapter III gave a similar result.

Up to this point the development has assumed that up to 12
would, in fact, be exp-nded if necessary to provide the foundation
for an annual confidence estimate. The question now is: why

',a*
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TABLE 4

P = .85

Singles Batches of 3

k dJ= eJ= dj eJ

H(k)-H(k-1) 1-H(k)

" 120 5.1E-7 5.1E-7 .0012 .0012 0

119 4.5E-6 5.]E-6 ]

118 2.OE-5 2.5E-5 2

117 .0001 .0001 .0069 .0081 3

V 116 .0001 .0002 4

115 .0003 .0006 5

114 .0006 .0012 .0224 .0305 6

113 .0011 .0022 7

* 112 .0018 .0040 8

111 .0029 .0069 .0511 .0816 9

110 .0043 .0112 10

109 .0063 .0175 11

108 .0088 .0263 .0902 .1718 12

107 .0118 .0382 i3

106 .0155 .0536 14

105 .0196 .0733 .1291 .3010 15

104 .0243 .0975 16

103 .0292 .1268 17

N. 102 .0342 .1609 .1545 .4554 18

101 .0392 .2001 19

100 .0439 .2441 20

NBI-I,

SB"B.°

- °

*".
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TABLE 5

P = .75

Singles Batches of 3

dJ= eJ= dJ eJ J

k H(k)-H(k-1) l-H(k)

120 5E-11 .0003 .0003 0

119 7E-10 1

118 6E-9 2

117 3E-8 .0024 .0027 3

116 1.4E-7 4

115 5.5E-7 5

, 114 2.OE-6 .0100 .0127 6

113 5.OE-6 7

112 1.4E-5 0 8

111 3.OE-5 .0001 .0284 .0411 9

110 .0001 .0001 10

N 109 .0002 .0003 11

- 108 .0003 .0006 .0604 .1014 12

107 .0005 .0011 13

106 .0010 .0021 14

105 .0016 .0037 .1016 .2031 15

104 .0025 .0062 16

103 .0039 .0101 17

102 .0057 .0159 .1401 .3432 18

101 .0082 .0241 19

100 .0113 .0354 20

99 .0152 .0505 .1615 .5047 21

98 .0197 .0702 22

97 .0248 .0950 23

96 .0304 .1255 .1578 24

95 .0364 .1618 25

4%
a

p.
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annually? If an annual series should end without clear resolution,
as indeed it must occasionally according to the current plans what
then? If there is not a clear cause of alarm, there is no need for
alarm.

Consider a decision to limit the annual expenditure to 9

missiles, while extending the reporting period to cover 12 missiles

I.> (the current standard) if uncertainty had not been earlier resolved.
In the worst case (all 12-missile series) reports would occur at 16-

'V month intervals, or 8 reports in 11 years. Were the JCS to accept
biennial reporting as an (occasional) substitute for annual
reporting, this would be a technically simple solution.

0

.7>
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Section 4 (Extract from Reference 17)

A Completely Bayesian Stopping Algorithm

[This is my suggestion for doing a complete Bayesian] decision theoretic

analysis of the stopping problem. On the basis of the preliminary calculations

described below, I estimate that this approach would reduce the number of units

*needed for testing by at least one per year over the savings which may be

attained by using a sequential probability ratio test.

The approach requires the specification of a prior distribution and a

loss structure. I suggest a possible form for these quantities below; but
other choices would yield to similar analyses.

Let p denote the proportion of non-defective items in the population.

Let h, denote a density on the unit interval, 0<p <1; let h0 denote the

uniform density on the unit interval; and consider prior densities of the form

(1) g(p) = w h1 (p) + (l-w)h0 (P),

* where 0 < w <1 is a prior parameter. Here h may be thought of as the

posterior density which resulted from last year's tests, and w is the
"-.- probability that p hasn't changed during the past year. If p has changed,

which it may with probability l-w, then it is assumed to be uniformly

distributed over the interval 0 < p <1.

Suppose now that one may observe conditionally independent Bernoulli

randon variables X1 ,....,X.k with common success probability p, given p, and let

"S Sk  =Xl+'".+X k

denote the number of successes. Then the posterior distribution of p, given

X19 .. X is

(p) w hI k(p) + ( k-w)h (p)

Sk(l-p~kSp)

k 1 0 -

where hk(p) - hi(p;k,Sk) c p k klh(p)

and h (p)dp~l

.W.
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Suppose now that a critical levl po is given with the following
properties: if p > P0, then the population contains enough good items; if
p < PC, then the population no longer contains enough good iteis and
corrective action is desirable; and if p is much less than Po, then corrective
action is necessary. Suppose further that the purpose cf each year's test is
to decide whether p < P0 or p >.pCj; and define one unit of cost to be the cost
of testing one item. Then the decision problem my be modelled as follows:
the possible decisions are I to decided that p < P0 and 2 to decide that
p > P0; if one decides that p < p 0 when, in fact, p >p0, then one loses C1
units; and if one decides that p > p0, when, in fact, p < p0, then one loses
C2 (P0 -p) units. Here C1 and C2 are positive constants. C1 represents the
cost of inspecting the entire system; and the ratio C2/C 1 is deter-mined by the
relative importance of the two kinds of errors.

These three elements, the prior distribution, the sampling distributions,
and the loss structure, determine an cptimal sampling plan, one which
minimizes the sum of sampling costs and expected loss to due an incorrect
decision. To describe it, first let m denote the maximum number of tests

which could be conducted in any given year (e.g. m = 12). Next, let

Ll(k,s) = CIP(p > polSk=s) + k

and L2 (k,s) = C 2E{max(0,po - p)ISk = s) + k

for k = 0,... ,m and possible values of s. Thus L1 and L2 denote the
conditional expected losses for the two decisions, given Xl,... ,Xk, plus the
cost of observing XI,... ,Xk. If k = 0, then s = 0 and the expectations are
unconditional. If sampling is terminated after k tests, then it is cptimal to
make decision 1 if and only if LI(k,Sk) 4 L2(k,Sk), in which the expected loss
due to terminal decision is

L0(k,Sk) = mnn{Ll(k,Sk),L2(k,Sk).

Let p(k,s) = P(Xk+1 = 1 I Sk = s)
U

for k = 1,... ,m-1 and possible values of s; and define L by
4.

L(m,s) =L(m,s)
-4
4,

4 and L(k,s) = min {L0(k,s),

(2) p(k,s)L(k+l,s+l) + (l-p(k,s L(k+l,s))

[ for k = 0,... ,mn-i and possible values of s. Then the cptimal sampling plan is
to continue sampling as long as L(k,Sk) < Le(k,Sk), stopping at time

..
4, v [ .... > / -- - - ,,
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t = min{k)O:LO(k,Sk) = L(k,Sk))

Here L(k,s) is the minimum expected loss plus sampling cost among all sampling
plans which take at least k observations.

If h is a beta density, then it is possible to compute L1 and L2 as sums
of products of-p0 and (1 -Po) times ratios of factorials. I can supply the
details, if you are interested. Using these explicit expressions, it is
straightforward to compute L by the backward induction (2); and, once L and L0
have been computed, it is simple to classify the possible outcomes (k,s) as
stopping points, points for which Lo(k,s) = L(k,s), or continuation points.
Moreover, the stopping points divide themselves into lower stopping points for
which Lo(k,s) = Ll(k,s) and upper stopping points for which 1o(k,s) = L2(k,s).
If the largest (smallest) lower (upper) stopping point is called ak (resp. bk),
then

t = min{kl: S a r S> bk)

and it is optimal to decide that p < pO if and only if St < at.

The several tables which accompany this letter describe the optimal
sampling plan in a special case in which m = 12, hl is a beta density with
parameters a = 6 and b = 2, w = 3/4, p 0 

= 3/4, C1 = 60, and C2 = 180. Here the
ratio C2 /C1 = 3 equates the seriousness of deciding that p < Po when p ) p
with that of deciding that p ) p0 when Po - p = 1/3; and the magnitudes of C1
and C2 were chosen to make it optimal to take up to about 12 observations.
I believe that this is consistent with the power and sample size requirements
discussed earlier. In a certain sense, these values of C1 and C2 are
implicit in those requirements.

Table 1 lists the boundaries ak and bk of the optimal test. These
a boundaries are remarkably insensitive to a+b. I got nearly the same values

* when a = 9 and b = 3. Table 2 lists an ad hoc modification of the optimal
boundaries which takes account of thq economies of testing items in groups of
three. Table 3 gives the posterior probability that p > p0 for each possible
6utcome, using the adhoc boundaries. It clearly exhibits the following
qualitative feature of the test: if the results of the first six tests this
year are consistent with last year's results, then further testing is not
optimal. Table 4 gives the frequentist properties of the adhoc test, the power

Afunction and expected sample size as a function of p. Observe that the maximum
expected sample size is substantially smaller than that of the adhoc test; and
recall the crucial role of the maximum in determining the number of items which
must be purchased for testing.

pW.
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TALE1 AN OPTIMAL BOUNDARY

Deig TABLEtrs m ,a1 b=2 w=3/4,_ p=34, 1=6, C=18

Dekg Paamtes mba1 =,w34 p34 16,Ck8

2 0 2
3 0 3
4 1 4
5 2 4
6 2 5
7 3 6
8 4 6
9 5 7

10 5 7
11 6 8
12 78

TABLE #2: A MODIFIED BOUNDARY

k ak bk

1
2
3 0 3
4 0 4
5 0 5
6 1 5
7 2 6
8 3 6
9 4 7

10 5 7
11 6 8
12 7 8

TABLE #3: POSSIBLE OUTCOMES WITH MODIFIED BOUNDARY

k Sk P(P->-Po)

3 0 .0251
6 1 .0084
6 2 .0507
7 3 .0813
8 4 .1211
9 5 .1634

11 6 .1185
12 7 .1546
12 8 .3111
10 7 .4543
8 6 .5183
6 5 .6517
3 3 .7450



TABLE #4: FREQUENTIST PROPERTIES

BETA MEAN VAR

.05 .9999 3.4575 1.281

.1 .999 3.8288 2.4702

.15 .9983 4.4161 3.5485

.2 .9903 4.8134 4.5345

.25 .9788 5.4154 5.43

.3 .9582 5.8102 6.2305

.35 .9244 6.3797 6.8348

.40 .8728 6.7887 7.559

.45 .8000 7.1384 8.1442



Comments by DW:

With this note Woodroofe completes the transition from Wald's
classic treatment to a Bayesian approach. The use of a prior

-, probability which is a mix of two hypotheses is in part an attempt to
* address the criticism that priors can become too sharply peaked,

neglecting the potential staleness of old data. One might still ask
whether there should be an upper limit to the value of k used in the
prior.

The loss functions included in this section are representative,
rather than my recommendation. The variable called po in the
functions Ll and L2 could have different values in the two cases.

i..
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Chapter V

Other Stopping Criteria

A possible argument for small test sizes may arise after all

missiles have been bought: any test reduces the potential tactical
inventory. The decision criterion is unfortunately not unique. This

chapter discusses a few examples.

Section 1. Utility as a Criterion

Let P S' -", be the posterior probability distribution

of p, given s "equivalent" successes and f "equivalent" failures on

which to base a prediction. Let U (N,p) be the "utility" of an

inventory of N missiles of reliability p. The estimate of the

utility of the inventory is then

,,
.MN

* Now perform a test: N goes to N-i; with probability p,

s goes to s+l; and with probability i-p, f goes to f+l.

-" After the test the utility is

The criterion is: Is U(N-I)>U(N)?

Examples of utility functions are:

Np (expected targets killed);

-Np(l-p) (uncertainty is reduced);

N-T/P (excess inventory, where T is size of critical
target list);

I - 0 - )'' I (expected damage);

U U- (\- CL )U-)I (b-largest integer in N/T; a=N/T-b is the-
fractional part; this reduces to Np for small N, goes to expected
damage for large N).

0 . Clearly there is a similarity between this method and that in

Secion 4 of the previous chapter.
4%.

Section 2. Information as a Criterion

Another criterion would be the information the decision maker
gains from the test about the posterior distribution of p. This

would be applicable when no single utility function can be agreed on.

An example is the Kullback-Leibler information measure on two
probability density functions

P V
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Fl and F2 (Reference 18):

,S.

It can be applied to the current problem by defining Fl and F2
respectively as the posterior and prior density functions for p.

Shannon's information measure S(Fl,F2) is the expectation value of
I(F1,F2) over the observed values of success and failures.

To illustrate, we may identify F2 with expression 1.6 from
Chapter I:
16''

and Fl with expression 1.8:

FS + 5 V* 4

so that log FI/F2 is

rIF (S t that

where C is the logarithm of the gamma-function combination in curly
braces, all independent of p. Noting that

,.%

0.* and letting jy [j- ( ) 'the logarithmic derivative of the
gamma function, the expression for I(Fl,F2) reduces to

e



Consider now the case: where s2=n2=l (a single successful trial).
Then

In the alternative case wher S2=0,n2=l (a single unsuccessful trial)

and the Shannon information is , + 4.

As this never goes to zero (for finite nl), the cost of this
information must be balanced against the use made of it.

I have not yet found a way to apply this criterion to the
Pershing testing problem.4

I
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Chapter VI

Conclusion

Ireturn now to the tasking from the Under Secretary of the
Army, as given in the opening of this memorandum. The mathematical
methods of sequential analysis proposed here for estimating
reliability changes possess a rigor not found in the Army' s current
method, and make clear the risks in following their prescription.

They provide a basis for reducing the size of an annual test and so
reducing too the cost of a testing program. Indeed, they even
challenge the need for an annual report, and suggest that the
interval between reports can be enlarged (e.g., to two years) with no
increase in risk to management. They do not, however, encompass a
variety of other issues which are fundamentally operational in
nature: firings to support training, alternate" uses of inventory,
system life. These must be the subject of further investigation.

0 Readers of this report may be disappointed that such very
different approaches to the stopping problem have been presented in
the foregoing chapters. I observe that such a seemingly simple
problem has apparently not been hitherto subject to the scrutiny it
deserves, and that it is comforting that two separate investigations
have reached similar conclusions.

N I see ultimately more promise in the methods proposed in Chapter
a. IV, but would recommend that those of Chapters III and IV be applied

to Pershing using the best available data so that a refined test
program can be determined. In Chapter III is proposed the
application, as yet unexplored, of Kalman filtering techniques to
this problem. This research merits monitoring, if not support.
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24/30 =.80 5 1/5=.20 --.60 .98

15/5=-.20 --.60
'.* 10 2/10-.20 --.60 .59+15 3/15 = .20 -. 60 .994

5 2/5 = .40 -AG .91
10 4/10= .40 --.40 .98
15 6/15 = .40 --.40 .99

5 315 =.XD .20 .68
10 6/10 - .69 --.20 .80
15 9/15 = .60 --.20 .86

5 5/5 = 1.00 +.20 .73
!,-! 10 10/10 = 1.00 +.20 .85

15 15/15 - 1.00 +.20 .93

I' 50

if% A



-Ta A , -.

I! 1 ~ Tb/c 4 (1'). /(('. .' ii l: , ,'

,r. - E. t.r S ." tf,' ,7 , in

I fWIriy'r

S. -, . of ( ,c, •; L ., , ets of rli fhc' c

.,T f;:',,) "'/5",1n' "D" in Nli~bilityt

2 1 i30 = .70 5 1/5 = .20 --.50 .95
10 2/10 = .20 -.50 .99

15 3 15 = .20 --.50 .99+
%" 5 2,3 ./,0 2-3 7

10 4/10= .40 --.30 .91
15 6/15 .40 --.30 .99

5 3/5=60 --.10 .49

',n 10 6/10 .60 --.10 .59
15 9/15= .60 --.10 .74

5 4/5= .60 +.10 .45

* 10 8/10= .0 +.10 .57
15 12/15 .80 +.10 .63

5 5!'5= 1.03 +.30 .80
10 10/10-1.O0 +.30 .95
15 15/15 = 1.03 +.30 .99

'The numb2r of te-Is in Data Set "A" is 30 fo" nll cases shown.

IThe values shown (PN are obtainled by using Fish-r's Exact Test:

*" = 1- 'r'; (N)(l 2( 2

"m x 1 ( S N 2 _)21 N

-.1 1  N

ax SI4S2 N whichever is smaller

N 1 - nurmber cf tests in sample set I

N2 - number of tests in sompic set 2

S1 - number of successes in s3rnple set 1

- number of succe-ies in sample set 2

Sec A. ald, 5'ratistiol Tho-y With E.giinfneri.;g Aop,c3tions, John Wiley and Sons. Inc., 1960, p. 709.

i

%0



Appendix D

HP-41 Programs

The HP-41 handheld calculator is slow but remarkably powerful.
For example, a program listing for the standard Fast Fourier
Transform (FFT) algorithm is no lengthier than that for a FORTRAN
version and because of some quirks of the HP-41, the program is in
some ways more efficient. With a 56-bit word, numerical accuracy is
h4!her than in most personal computers, and so round-off problems are
slower to arise.

Reported in this appendix are a set of programs written for this
study. Their original purposes were to give or to verify solutions,

.-% but they have two additional values justifying their inclusion here:
they demonstrate that the mathematics called upon is not intractible

0 and can be packaged small, and they may be useful as is to otlers
. working the same or related problems.

The first group provde solutions to Equations 1.9 and 1.11 and
thus can be considered a proper means of getting the answers wrongly
sought via Fisher's Exact Test. The versions given are lengthy but
are relatively robust to the accumulation of round-off errors.
Included is the program PII, written to be a model for and to verify
calculations of Singpurwalla and Launer.

The second group provide handy means of exploring Woodroofe's
treatment of sequential analysis. ET provide solutions to Equations
I and 2 of Chapter III, Sec 1. BND provides Wald's and Woodroofe's
boundaries of the region of test continuation; and MW permits
computation of a number of properties of a test plan defined by BND.
LOP computes boundaries using the Bayesian method of Chapter III,
Sec. 4.

Not included is a package of routines which manipulate truncated
Taylor series and was used to compute the expansion of D(n,m) given
in Eq 4.4. This is available from the author.

The memory requirements of an HP-41CV or CX are needed, and if
it is not the CX version, then an Extended Functions module (XF) with

O its Expanded Memory. The occasional use of Synthetic Programming can
be circumscribed, -r if the programs are identical to those listed
here, they should run on any version of the HP-41 with adequate
memory and the XF module.

1A,
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JCS+ Implements Eq.1.9 and DA+ Eq.1.11.

They call for inputs and report the value of the integral as
"CL=" for Confidence Level. The plus sign means there are no
subtractions in the algorithm, hence less round-off error.

PII Implements Eqs.4-6 of Section 111.3.

Entering at LBL A leads to an evaluation of tL and at LBL-B to
evaluation of f3 . Lines 51-62 clear a block of registers, using
program BC in a module called PPC ROM. This can be replaced by

ordinary coding. If Flag 02 is set, then the summation sign in Eq.4
or 5 is ignored; only a single term is considered. Subroutines 1, 2,
and 13 are the core of algorithm.

ET

Solves Eqs. 1 and 2 of Section IV.1.

Cal f r N , and (n adjusted and
k=c

P C. k r

Calls for N, c, and p (unadjusted values will be used as is).

Memory utilization keyed to that in MW: N, c, and p in same

registers.

MW

*Requires two files in Extended Memory named Am and Bm where m is
a number provided in response to query "FILE#?" or is already stored

* in register 19. (Routine BND may have been used to create these
files.)

Start program at line 1 or at LBL E; line one to provide/revise
the value of N, the maximum number of tests. At E, provide "p" and
"FILE#." If RAD-DEG selection set to RAD, program computes and
reports G(k) as required by Section IV.3; if set to DEG, this is
ignored.

Program reports ( (p), E(t), and a (p) (which in effect
interchanges meaning of "reliable" and "unreliable). Sect IV.1.

% "l M



LBL B produces output stating "bi/i = cumulative probability of
sufficient failures to halt." Accumulates probability of exit
passing clockwise around boundary. If there are several points on
boundary at N=N max, then these are labeled F. Then program
continues along "a" boundary.

LBL C does the same as LBL B but counterclockwise.

LOP

To meet the goals of Section IV.4. Computes the boundary
conditions for continued testing, based on the loss functions Li and
L2 (which can have associated with them different criteria P1 and P2,
as well as cost factors Cl and C2).

Program invites all necessary input insertion/revision/
verification, and then constructs a diagram of-the operating space.
To conserve space this pattern is stored as packed binary data (a la
flags). LBL J provides a visualization of this pattern, for display
or printing (see figures below). This algorithm has also been run on
a Commodore for verification.

Routines 6 and 7 support generation of loss functions L, and L 1

If others are chosen, these must be rewritten along with some of
Routine 2 (lines 57-100).

~BND
B Develops the boundaries to be used in MW, by Wald's and

Woodroofe's methods. Input called for: PO, P1, a, and b (later, m).

O<PO<PI< 1. Level of test = a. Probability of Type II error - b

(P>- P1). Ho: p!.po. (Section IV.2). M is number of tests.

Lines 1-85: Wald's methods, ar- and brl reported out.
86-156: Woodroofe's modification.

4 157-END: Subroutine E. Calls for a file number k; then stores
Woodroofe's boundary numbers at\ and b. in files

AK and BK. If Flag 25 is clear to start, program
halts if attempt is made to overwrite existing file.
Set the Flag to permit overwriting.

4
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*31C

81.LBL "JCS' 51*LBL 81 960LBL 83
82 CF 29 52 RCL @6 97 RCL II
03 *DEL=' 53 STO 87 98 RCL 88

* 84 SF 88 99 YtX
. 05 54#LBL 82 180 ST* 12

86 XEQ 88 55 RCL 86 11 RCL 02

87 "Hl=" 56 RCL 87 102 E
88 E 57 - 183 -
89 XEQ 00 58 LASTX 184 RCL 88

59 E 185 +
18*LBL 8 68 - 186 LASTX

1 "SI= 61 / 187 XEQ 84
62 ,18 ST* 1?

13 XEQ 00 63 RCL 87 109 RCL @I

64 - 118 E
14+LBL C 65 LPSTy III -
15 "H2=" 66 RCL 89 112 RCL 88

16 3 67 + 113 +
1? XEQ 88 68 / 114 LASTX

69 * 115 XEQ 84
18#LBL D 78 RCL 88 116 ST/ 12

19 'S2=" 71 / 117 'CL="

28 4 72 E 118 FIX 4
21 XEQ 88 73 X0) 13 119 ARCL 12

74 * 128 AVIEW
22#LBL 18 75 ST+ 13 121 STOP

23 *REL DEG' 76 ISG 87 122 RTH
24 AVIEW 77 GTO 82

25 RCL 88 78 RCL 88 123,LBL 88
26 CHS 79 CHS 124 FIX 8
27 E 88 RCL 86 125 FS?C 88
28 + 81 - 126 FIX 4
29 STO 11 82 LASTX 127 ARCL IND X

38 RCL 84 83 E 128 PROMPT
% 31 E 84- 129 FS?C 22

32 + 85' 138 STO IND

33 RCL 83 86 RCL 80 131 RTH
34 - 87 RCL 11

* 35 STO 85 88 / 132*LBL 84

36 STO 86 89* 133 CHS
37 LASTX 98 RCL 13 134 X<Y
38 E 91 X> 12 135 SIGN
39 - 92 * 136 X/> L
48 STO 83 93 ST+ 12 137 ST+ Y
41 E 94 ISG 86
42 - 95 GTO 81 138#LBL 05

% 43 RCL 82 139 X=Y?
% 44 + 148 GTO 86

45 STO 89 141 ST* L
46 LASTX 142 D3E X
47 CHS 143 GTO 85

48 R:L 81
49 + 144*LBL 86
58 ST 18 145 P!N

14i X'6
147 FTb

* 14.3 .E,.
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48L8L 81 181 LASTX 151 ST* 16
49RCL 86 182 E 152 RCL 81
58 5T0 87 183- 153 E
5 8 184 / 154 -
51 PCI 83 105 RCL 11 155 RCL X
52 VA 186 RCL 87 156 RCL 82

eO4LBL 'DA+' 53 +
82 CF 29 54 STO 10 187 - 157 E
83188 LSTX 158 -

85189 RCL 12 159 -• 0 4 *DEL=" 56 E84 DLZ 5 E 18 X<>Y 168 XEO 85
05 . 57 + 111 - 161 51* 16

86 XEQ 00 58 RCL 85 112 / 161 ST* 16

59 + 112 162 RCL @5

87'LBL A 68 STO 12 113 * 163 RCL X

es 8 HI= 114 RCL 89 164 RCL 83

89 E 61#LBL 82 115 * 165 E

'62 PC 1 116 RCL 14 166 -in '' 1 F67 6 CL

63 RCL 0 73B 64 - 118 * 168 XEQ 85

12"B=" 64 - 119 ST+ 15 169 ST/ 16
12 i 65 STO 13 128 ISG 87 178 FIX 4
132 2 66 PCI 82 121 GTO 82 171 "CL="
14 XEQ 88 6? E 122 RCL 85 172 ARCL 16

68 - 123 CHS 173 AVIEW
15-B= C 69 OHS 124 RCL 86 174 BEEP
16 H2= 78 STO 88 125 - 175 STOP
173 126 LPSTX 176 PTN
18 XEQ 88 71LBL 83 127 E

72 E 128 177181 85
19*LBL D 73 RCL 82 129 - 178 OHS
28 S2=" ?4 - 138 PCL 89 179 XOY

21 4 75 RCL 98 131' 188 SGY

22 XEQ 88 76 - 131 5 181 SIGN?7 LASTX 132 RCL 15 181X<> L

7LBS 133 X(> 16 182 ST+ Y
23*181 18 78 E13 *

24 "ABS DEG" 79 - 135 1+ 16 183181 86

25 AVIEW 88 /135 ST 16 184 86

26 RCL 88 81 RCL 10 136 ISO 86 184 X:Y?

27 1/X 82 RCL 88 137 GTO 81 185 GTO 87

.1, 28 E 83- 186 ST* L
29 - 84 LASTX 138*LBL 84 187 DSE X

2 T9- 84 L 139 RCL 88 188 GTO 86,,38 SIT) 89 85 PCI 13 18PL8

31 RCL 81 86 X<Y 141 RCL 82
32RL8 7141 E 189*LBL 87

32CL 82 87- 142 - 198 RDN

34 3 0 11 89 143 YtX 191 XW L

35 RCL 83 98 RCL 89 144 ST* 16 192 RTH
145 RCL 88

36 + 91 * 146 CHS 193LBL 88
"37 E 92 E 14? F 19 F1X 8

38 - 93 X (> 14 148 + 195 FS?C 88

13 STO 5 94 * 149 C 196 FIX 4

48 RCL 84 95 ST+ 14 149 RCL 05 196 FIX 4

41 RCL 83 96 ISG 02 150 YtX 197 ARCL IND X

42 - 97 GIG 83 198 PROMPT
43 E 98 RTO 86 199 FSIC 22

-43 E 98 PCL 86 288 310 IND '

44 + 99 RCL 07 201RTI

45 STO 86 188 - 2@1 ETH
282) END

46
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1 ) 1--.. ... ,..

S. 123 CL 16
124 YtY

G E t,:, r7 125 FCL 14
6 . C 126, RCL 83

X/ 27L8L7 i RC L 14

sFO .,1 68 A E 129 YtX
69 S T f: @q 138 4

: 31 ST* 13
7A .LE8L 67 132 RCL 84
71 RCL 19 133 E

7" 72 IHT 134-
I , 73 STO 17 135 RCL 161- 74 RCL 89 136 XEQ 04

1A E' 75 X=? 137 ST* 13
i7 - 76 CTO 16 138 RCL 85

7 E TE;t 139 E
7 CS 140 -

2A RTH 79 E 141 RCL 16

R2.LBL + 8 + 142 XEQ 84
2 L 8 81 ST0 18 143 ST! 13
42 SF 00 82 /
23 GTO 18 83 STO 88 144#LBL 17

84 - E 145 XEQ 19
24.LBL B 85 RCL 15 146 RCL 12
256LBL Pl 86 + 147 ST/ 13

87 STO 14 148 FIX 4

88 LASTX 149 FC? 88
SFLBL 18 89 RCL 16 158 'b="

98 RCL 83 151 FS? 8
29 FIX 2 91 + 152 "I-a="
31 CF 22 92 STO 84 .153 E
3218 93 + 154 RCL 13
3218 94 STO 85 155 FC? 81
33 XEQ 88 95 . 156 -

96 STO 13 157 ARCL X34LBL C 97 RCL 16 158 "F X="
35 3GMMP= 98 STO 8 159 FIX 8

37 XEQ 88 99 X=8? 168 RCL 17

38 "DELTP 188 GTO 28 161 ARCL X
39 162 28
39 15 11LBL 81 163 +
48 XEQ 88 182 XEQ 21 164 X>Y

41+LBL D 183 RCL 16 165 STOIND Y
42 FIX U 184 E 166 AYIEW

43le8 15 + 167 ISG 19

48 6 RCL 14 168 GTO @7
4 4X41 18? RCL 84 169 FS? 81
45 XEQ 88 188 RCL 8 178 XEQ 89

46LBL E 189 ST- T 171 BEEP
47 FIX 118 ST+ Z 172 STOP
48 FX=" III ST- Y
49 17 112 * 173#LBL J
49 XEQ 113 / 174 28.82
58 RCL 87 114 * 175 RCL 19
52 RCL 16 115 RCL 89 176 FPC
c 116 / 177 +
53 E 117 ST* 13 178 XRO 28,67
cc 118 SE 8 179 RTN
55 119 GTO 81
56

* 57 FS' A2
58 X(;Y



-" ~24'.! -. IE- K3 3(7LE> ::

. L 2 4 2 LL 6 7 ... .. ..

I ,- x - 243 rCL 16 TO 1 36, E

Irc4 TO 08, 244 ST- Y 369*
1:i5 , ' 370 PCL @I,,245' 367.TLE;L 1i37 CL8

246 s 368 L 1? 371 ST- Y

1 tL6L 65 24 EL 389 5 372 /

.7 T' L 24c , 31 6 "ST :i 3 RI

1 cr, 29 E 311 - 374

)9'.+ 312 STO 82 37

198 235 Y 251DSE i 313 X=6? 7, E

191 G,0 65 252 GO 0 314 GTO 92 37 +
253 S* 12 315 RCL 09 378 DSE 61

1924LBL 16 316 X70? 379 GUO @8

193 RDN 254.LEL 14 317 GTO 92 380 RCL

194 X(> L 255 PCL 12 318 RCL 15 381 CHS

195 RTN 256 ST+ 13 319 E 382 E
257 RTN 328 6 383 +

197 PCL 16 256:k 2 321,LEL 91 385 YX

198 RCL 8 259 CF 81 322 ENTERt 386 *

199 - 268 RCL 16 323 ENTERt 37 ST
2-0 38 STO67P6

288 STO 0? 261 E 24 RCL 8 388 CH

281 RCL 17 262 STO 13 325 * 389 E
202 X>Y? 263 + 326 RCL 82 398 +
203 X(>Y 264 STO 84 327 / 391END

204 STO 01 265 RCL 83 328 E
205 E 266 E 329 X> 11
26 ST+ 07 267 - 330
287 RCL 84 268 S1O 85 331 ST+ 11
288 RCL 08 269 RCL 16 332 RDN

289 - 270 RCL 15 333 ISG X

218 SO 06 271 + 334"

21! RCL 83 272 STO 86 335 DSE 82
212 E 273 RCL 17 336 GTO 91

213 STO 12 274 S1O 88

214 - 275 X=8? 337*LBL 92
215 SO 82 276 GTO 18 338 RCL 89
216 X=O? 339 CHS
217 GTO 15 277LBL 13 340 E

278 RCL 84 341 +

218LBL 82 279 RCL 85 342 RCL 14
219 RCL 85 288 RCL 86 343 RCL 83

228 RCL 83 281RCL 00 344 +

221 RCL e6 282 ST- T 345 YtX

222 RCL 02 283 ST+ Z 346 RCL 11

223 ST- T 284 ST- Y 347 *
224 ST- Z 285 * 348 STO 12
225 ST- Y 286 / 349 RTH
226 * 287 *

227 / 288 ST* 13 358LBL "PP"
228 * 289 E 351STO 81

229 RCL 88 298 ST+ 13 352 RCL 15

238 * 291 HE 18 353 RCL 83

231 ST* 12 292 cTO 13 354 ST+ Y

232 E 355 XMY

233 ST+ 12 293*181 18 356 /

234 85O 82 294 RCL 14 357 PCI 89

235 cS0 82 295 RCL 16 358 -
296 + 359 STO I

236*LBL 15 297 LSTX 368 ENTEPt
237 RCL 81 298 XEQ 84 361 CHS
238 X=8? 299 ST* 13 ?62 E
239 GO 14 388 RCL 85 363 +
248 E 3b RCL 86 364'

, - - - 302 + 365 5
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APPENDIX A

An Algorithm, A Computer Code, and A User's Guide, for

a Bayesian Binomial Hypothesis Testing Procedure

A.l. INTRODUCTION

In the Bayesian binomial hypothesis testing procedure, we need

__to find the pair (nt,x*) such that [see Equations (4) and (5)]:
0 tt

lx Fn n n-j
S t J(i p) t g(p )dp a

j=O P. t t

and

Pn )n t-i
-- ItIj--

A L HJt p t + t t

where

g(p F (y+6) Y-l (- p ) 6-1
t r(y)r(6) t

The above inequalities can be rewritten as:
F(T+ t n I r(j+y)r(nt-j+6)

g (x*,nt) r(Y6) I (8A)1 t t M)M) J=O Tnt+Y6

g2 (x* n) = (y)J(6) A t A-(-l) j-(

n  f n t- A -m B(A,; £+6, m+6)l] > 1 -

I m m
18

_ . . . ."",- ' " ." " -" .,", ,- ." ' "
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where

1

B(AI; r,s) = fPt (1 - p s-i dp

A

A computer code designed to obtain the smallest values of n

x* subject to the two inequalities (8,A) and (9A), based on an enumera-
t

tion procedure discussed next, is obtained.

A.2 DESCRIPTION OF THE ENUMERATION PROCEDURE

The enumeration procedure exploits the fact that both g1 (xt,nt)

* and g2(x tnt) are increasing functions of xt if nt is fixed. The
0

-. procedure starts with some initial value of nt , say nt , and finds

0 0
the largest xt such that gl(xn t n a . Once such an xt , say xt

is found, it is guaranteed that the first inequality will be satisfied

0
for values of x smaller than x . The procedure then tries to

0
find an x smaller than xt such that g2 (xt,nt) > 1 - . If such

an xt does not exist, the value of nt is increased by one and the

procedure starts all over again. As nt increases, the procedure finds

the smallest values of nt and xt satisfying both inequalities. The

* flow chart for this enumeration procedure is presented in Figure A.l.

A.3 THE COMPUTER CODE

., The program requires certain JCL cards and a user input of some

parameters.
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Figure A.1. Flow chart for
Initaliz !TJenumeration
Initaliz NTprocedure.

00

Comut g
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> a N
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00
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A.3.1 Input Specifications

The cards should be arranged in accordance with Figure A.2; each

card will be explained individually.

Job Card and JCL Cards: The standard job card is used and so are

the following JCL cards:

// EXEC FORG2

*, f/IFORT.SYSINODD

//GO.SYSLIBODD

//OODD DSN=GWU.IMSL.V9.DLOAD,DISP=SHR

/ //GO.SYSIN ODDOOOO*

where the character "0" indicates a blank space. The first two JCL

cards immediately follow the job card. The remaining JCL cards are

placed after the program and just before the input information card.

The fourth JCL card is needed to use the IMSL subroutines on an IBM

machine.

Input Information Card--DEL, SGM, SDEL, ALF, BETA, NT: This card

contains sorted input information, DEL, SGM, and SDEL, which are the

parameters A , y , and 6 in Equations (8A) and (9A); ALF and BETA are

the right-hand side parameters a and in these inequalities. These

parameters are specified in format F10.5. The input NT is the initial

value of nt selected, and is in 14 format. Usually, this value is one.

EMI
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Input Information Card

JCL C a r ds

• JCL Cards

/ . -Job Card

Figure A.2. Card deck structure.

A.3.2 Interpretation of output

The program uses an iterative scheme and evaluates gl(xt ntd

and g2 (xt,nt) for different values of xt adn nt . On the output,

the values of gl(xt,nt) and g2 (xt nt) are printed as

FIRST CONST =

0 SECOND CONST =

for different values of xt and nt

The solution of the problem, that is, the smallest values of

and nt satisfying the inequalities (8A) and (9A), are printed in the
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last line of the output as

Sample output is presented in Table A.l.

The smallest values of xt and nt satisfying the inequalities

(8A) and (9A) are X = 10 and N = 15 . In this example, the values

of the parameters are A = 0.25 , y = 106 , 6 = 19 , a = 0.10 , and

= 0.25 . The initial value of nt is one.

NW The listing of the program is given in Appendix B.

*_',

_1.

0:'

A
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TABLE A.1

Sample Output

FIRST CONST= ).3001 xr= 0.0 Nr= 12
FIRS? CoiSTr= ).),)0'Ic Xf= 1.0 Nr= 12
FIRS? C3 Sr= ).)3)3 Kr= 2.0 Ir= 12
FIRST CO4ST= 0.)00-2 xr= 3.0 NT= 12
F'IRST COIST= 3.30019 K?= 4.C Nr= 12
FIRS? CONSV= ).)3135 xr= 5.0 4T= 12
FIRST q" 'S ZT= . -)73r xr= 7=; 12
FIRST COiT= 3...31U0 XF= 7.0 fT= 12
FIRSr C3I4T= ).10523 xr= A.O ir= 12
SECOID CVPST= .55275 yT= 7.0 NT= 12
FIRSr CO04S T ).)0030 xA= 0.n  'T= 13
FIRST COIS= )3.)33)) xr= 1.0 %r= 13
FIRST CJN'ST= ?.))0ru LT= 2.0 NT= 13
F'RST C'NST"T= 7.3))01 xr= 3.0 NT= 13
FeRS7 CVrT= ] 330)3 (I: 4.0 uP= 13
F.FST CYJ';ST= 1.40041 Yr= 5.0 NT= 13
FIPSI C3;ST= ).33245 Xr= r.0 *IT= 1.3
FTPSU Ci3ST = ). )1137 Xr= 7.0 4 r= 13
FIRST CJqS = 0.34379 ,= 9.G NT= 13
FIRSr CO'; ST= ).132-9 DT= Q.) NT= 13
TC0'D ')IST= ).5555A ?r= 8.0 vr= 13

V IRST CON ST= ) . X Iy= 1.0 VfN= 14
F 1HS - C)131= ).)3" r = 2.0 D "= 13
F:ST CO43T= I.)3O9I XT= 3.0 N"= 14
FIRST CO'JST= 1.100.2 -r= 4.0 Nr= 14
FIRST C)S'T= ).)3012 Xr= 5.0 qr= 1'4
FIRST N.-T= 3.30)0F Y'= 5.0 NT= 14
FTRST ))i"= 3.), 410 Xr= 7.0 MT= 14
FTRS.'. C3vD P= S).)1717 X : = ,.0 !1t= 14
FIRSf CIt 3T= )3 .$57 Kr= .0 Nr= 14
FIRST CONST= ).162.5 'P= 10.0 Nr= 14
S7C0D ZINST= ).71435 Kr= '. R r= 14
7rPST CONST= D.mOfOO yr= ).0 NIT= 15
FIRSr C-iST= ).)0030 xr 1.0 i r= 15
FIRS C3J1ST= .30000 Xr'= 2.0 IT= 15
FIRST CST= O. 0CJz xr= 3.0 NT= 15

FIRS CO4,= 0.00025 X?= 6.0 NT= 15
FTPST C3NST= 3.391)41 xr= 7.0 NT= 15
F!Psr CJ3.7= ).)36%5 x r = .o r= 15
FiFST CO'sT= 1.22432 Xr= i.o N= 15
FT RS C31 S?= 0. 757", Xr= 10.0 NT= 15
FIRSi' C)iT= ).1)3'17 xr: 11.0 3r= 15
7:CO':D CJ;IS"'= .. T26, ;E- l7c 'T= 15

'FCO;D Co > T .5)272 YT= 9.0 NT= 15
'= 13.1)0)0 '1: 19

I
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L I M-1 5
.1-TE ST
IIEXEC FORX2

//FORT.SYSIN DD
IMPLICIT REAL*,8(A-H,O-Z)
INTEGER IER
REAO(5,1O) DEL,SGM,SOEL,ALF,BETA,NT

10 FORMAT(5Fi105,.4)
BET-i .0-BETA
XJ-DEL
X2-1 .0

C WE START THE ALGORITH14 BY INITIATING XT AS ZERO
W1=SGM
W2=SDEL
Al-Wi
BI=W2
CALL FACT1(Al,B1,SON)
W-SON

11 XT=0.0
* WNT=NT

W4=WNT+SDEL
TA1=S GM
TB1=W4
CALL FACT2 (TAl .TB1ITERS)
PAR=TERS
CD] =W*PAR

C THIS IS THE VALUE WHEN XT IS ZERO
C NOW WE COMPUTE THE VALUE GI WHEN XT IS OTHER THAN ZERO.

301 IXT=XT
TOT-CO 1
IF (XT.EQ.O.O) GO TO 1001
DO 1000 I-1,IXT
RI=I
Pl-W1+RI
P2-Wi-R I
TAI=Pl

* TBl=P2
CALL FACT2 (TAl ,TB1 .TERS)
P3-WNT+1 .0
P4-P3-RI
P5-RI+1 .0
Z= (DGAMMA (P3)) (D(GAMMA (P4)) (OGAMMA (P5))
P-T ERS

* TOTwTOT+(P*Z*W)
1000 CONTINUE
1001 GI-TOT

WRITE(6,60) G1,XT,NT
*60 FORMAT(5x,2FIRST CONST-',F1O,5,5x,'XT-',F5.1,5x,wNT- *Iii,)

C SO WE COMPUTED THE VALUE OF FIRST CONSTRAINT
IF(G1.GT.ALF) GO TO 333
IF(XT.EQ.NT) GO 10 380
XT-XT+1 .0
GO TO 301

333 XT-XT-1.O
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L I M- 1 .5
J-TEST
// EXEC FORX2
//FORT.SYSIN DO

IMPLICIT REAL*8(A-H,0-Z)
INTEGER IER
REAO(5,10) DEL,SGMSDEL,ALF,BETA.NT

10 FORMAT (5FIO.5,14)
BET-i .0-BETA
X1-DEL
X2-1.0

C WE START THE ALGORITHM BY INITIATING XT AS ZERO
WI S GM
W2-SDEL
Al-Wi
Bl=W2
CALL FACTl(AlB1,SON)
W-SON

11 XT-0.0
WNT-NT
W4-WNT+SDE L
TA I-SGM
TB1=W4
CALL FACT2 (TAl ,TBl ,TERS)
PAR-TERS
CO I-W*PAR

C THIS IS THE VALUE WHEN XT IS ZERO
C NOW WE COMPUTE THE VALUE GI WHEN XT IS OTHER THAN ZERO.

301 IXT-XT
TOT-CO 1
IF(XT.EQ.0.O) GO TO 1001
DO 1000 I-l,IXT

9 RI-I
P 1-Wi+R I
P2-W4-R I
TAI=PI
TB1=P2
CALL FACT2 (TAl ,TBJITERS)
P3-WNT+i .0
P4-P3-R I
P5-RI+1 .0
Z- (DGAMMiA (P3)) (DGAMMA (P4)) (DGAMMA (P5))
P-TERS
TOT-TOT+(P*Z*W)

1000 CONTINUE
1001 Gi-TOT

WRITE(6,60) G1.XT,NT
60 FORMAT(5X,'FIRST CONST-',FIO.5,5XIXT-',F5.1,5x,'NT-.14)

C SO WE COMPUTED THE VALUE OF FIRST CONSTRAINT
IF(G1.GT.ALF) GO TO 333
IF(XT.EQ.NT) GO TO 380
XT-XT-i.0
GO TO 301

333 XT-XT-1.0
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IF(XT.LT.O.O) GO TO 999
C OTHERWISE WE GO AND CALCULATE G2

380 WW-W* (DEL**WNT)
C NOW COMPUTE THE VALUE WHEN XT IS ZEROTHAT IS J IS ZERO.
C WHEN J IS ZERO L IS ZERO
C WHEN J 1S'ZERO,M GOES FROM ZERO TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M IS ZERO

B-W2
TAl-WI
TBI1 W2
CALL FACT2 (TAl ,TB1 ,TERS)
CALL tiDBETA(X1,A,B,P1,IER)
CALL MOBETA(X2,A,B,P2,lER)
Y-TERS
VALO= (P2-P1) *Y
SUM=VALO

C NOW CONSIDER THE CASES WHERE M IS ONE TO NT.
DO 1500 tM=],NT

BMI-WNT+1 .0
Bi2=WNT-BM+1.0
BM3-BM+ 1.0
BMCOM=DGAMMiA (BMI)!/ ((DGAMMA (BM2)) *(DGAMMA (BM3)))
BFAC= (DEL** (-Bti)) *9tjCj
B=W2+BM
TA I-WI
TB 1-B
CALL FACT2(TAI,TB1,TERS)
CALL RDBETA(X1,A,B,P),IER)
CALL MDBETA(X2,A,BP2,IER)
Y-TERS
VAL"-(P2-P1)*Y*BFAC
SUM-SUM+VAL

1500 CONTINUE
JXT-XT
RJSUM-SUM: I F XT IS ZERO WE HAVE ONLY THE ABOVE TERM
IF(XT.EQ.O.O) GO TO 2001
DO 2000 J-1,JXT

CTHIS IS THE MOST OUTER SUM
RJ-J
RJI-WNT+1 .0
RJ2=WNT-RJ+1 .0

ml RJ3-RJ+1 .0
COMBJ- (DGAMMA (R1.1) ) / ((DGAMMA (RJ2)) *(DGAMMiA (RJ3)))

C NOW L IS FROM ZERO TO J.AGAIN CONSIDER THE CASE WHERE L IS ZERO
LP-(-1' **J
PL-LP

C NOTE WHEN L IS ZERO M GOES FROM ZERO TO NT-J

LJL-NT-J

IF(LJL.EQ.O) GO TO 2101DO 2100 M-1,LJL



RRM-M
RRM1-WNT-RJ+1 .0
RRM2=WNT-RJ-RRM+1 .0
RRM3-RRM+1 .0
RCOM- (DGAMMA (RRM1) )/((DGAMMA (RRm2)) *(OGAMMA (RRM3))
FFAC= (DEL** (-RRM) )*RCOM
A-SGM
B-RRMi+SDEL
TA 1-A
TB 1-B
CALL FACT2(TA1,TBJ,TERS)
CALL.MO0BETA(X],A,B,PJ, IER)
CALL MDBETA(X2,A,B,P2,IER)
Y-TERS
VALM= (P2-Pt) *FFAC*Y
VA L0= VALO04VA LM

2100 CONTINUE
2101 RLSUM-VALO*PL
C THIS IS THE VALUE WHEN L IS ZERO

*C NOW WE WANT TO CONSIDER L FROM 1 TO J.THIS IS THE SECOND SUM
DO 2500 L-1,J
RL-L
RL1-RJ-RL91 .0
RL2-RLI1 .0
COMBL (OGAMMA (RJ3) ) /((DGAMMA (RL 1)) *(OGAMMA (RL2)))
LPL- (-1) **(J-L)
FLP-LPL
POWER-DEL** (-RL)
FACL-FLP*COMBL*POWER

C NOW SHOULD CONSIDER M LOOP AGAIN.NOW M S FROM ZERO TO NT-J FOR GIVEN L
C START WITH MIS ZERO

A-RL+SGM
B-SDEL

U CALL MOBETA (Xl ,A.B,P1, IER)
CALL MDBETA(X2,A,B,P2,IER)
TA 1-A
TB I-B

* CALL FACT2(TAI,TBI,TERS)
Y-T ER S

VAL-(P2-PI)*Y
RMSUM-VAL
LL-NT-J
IF(LL.EQ.O) GO TO 3001

elf 00 3000 1-1,LL
RM-M
RMI-WNT-RJ+1 .0
RM2mWNT-RJ-RM+1 .0
RM3-RM+1 .0
COMI'- (OGAMMA (RM1) )/ ((OGAMMA (RM2)) *(DGAMiA (RM3)))
FACM- (DELtA (-RM)) *(COMBM)
A-RL+SGM

* B-RM+SDEL
CALL MDBETA(X1,AB,P1,IER)
CALt MDBETA(X2IIAB.P2,IER)
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TA 1-A
TB 1-B
CALL FACT2(TA1,TB1,TERS)
Y-TERS
VAL-(P2-P1) *FACM*Y
RMSUM=RMSUMi+VAL

3000 CONTINUE
3001 RRSUM-RMSUM
C THE MOST INNER LOOP IS FINISHED.

RLSUM- (FACL*RRSJM) +RLSUM
C THIS IS THE SUM FOR L LOOP
2500 CONTINUE
C L LOOP IS FINISHED
C NOW FINISH J LOOP.THE MOST OUTER LOOP.

RJSUi= (COMBJ*RLSUi) +RJSUM
.5 2000 CONTINUE

C SO WE EVALUATED G2.
2001 G2-RJSUM*WW

* WRITE(6,61) G2,XT.NT
*61 FORMAT(5x.'SECOND CONST-.,F1O.5,5x,'XT-',F5.1,5x,'NT-',14)

IF(G2.LT.BET) GO TO 999
* 777 IF(XT.LT.'I.O) GO TO 888

XT-XT-1 .0
*C CHECK G2 AGAIN.

WWnW* (DEL**WNT)
C NOW COMPUTE THE VALUE WHEN XT IS ZEROTHAT IS J IS ZERO.
C WHEN J IS ZERO L IS ZERO.
C WHEN J IS ZERO,M GOES FROM ZERO TO NT AND L IS ALWAYS ZERO IN THIS CASE
C FIRST CONSIDER THE CASE WHERE WHEN M IS ZERO

A-Wi
B-W2
CALL MDBETA(X1,AB,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
TA 1-A
TB 1-B
CALL FACT21TA1,TB1l,TERS)
Y-TERS
VALO (P2-P1) *V

S SUM-VALO
C NOW CONSIDER THE CASES WHERE M1 IS ONE TO NT.

DO 1501 M-1,NT
A-Wi
BM-ti

N BMl-WNT+1 .0
BM2-WNT-BM+1 .0
BM3-BM+i .0
BMCOM-DGAMMA (BMI) / ((OGAMMA (BM2) ) * (GAMMA (DM3)))
OFAC- (DEL** (-GM)) *BMCOM
B-W2+BM
TA 1-A
TB 1-6
CALL FACT2(TAI,TBI,TERS)
CALL RDBETA(X],AB,PJ,IER)
CALL MDBETA(X2,A,B,P2,IER)
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Y-TERS
VAL- (P2-P1) *Y*BFAC
SUM-SUMi+VAL

1501 CONTINUE
JXT-XT

JA RJSUR-SUM
C IF XT IS ZERO WE HAVE ONLY THE ABOVE TERM

IF(XT.EQ.O.O) GO TO 2011
DO 5000 J-1,JXT

C THIS IS THE MOST OUTER SUM
RJwJ
RJ1-WNT+1 .0
RJ2=WNT-RJ+1 .0
RJ3-RJ+1 .0
COMBJ- (OGAMMA (RJ 1)) /((DGAMMA (RJ2)) *(OGAMMA (RJ3)))

C NOW L IS FROM ZERO TO J.AGAIN CONSIDER THE CASE WHERE L IS ZERO

C NOTE WHEN L IS* ZERO M GOES FROM ZERO TO NT-J

IF(LJL.EQ.O) GO TO 2102
DO 2105 M-1,LJL
RRM-M
RRti=-WNT-RJ+1.0
RRM2-WNT-RJ-RRM+1 .0
RRM3-RRM+1 .0
RCOM (DGAMMA (RRMI) )((DGAMMA (RRM2)) (DGAMMA (RRM3)))
FFAC- (DEL** (-RRM) ) *RC3M
A-SGM
B-RRM+SDEL
CALL MDBETA(Xl,A,B,Pl,IER)
CALL MODBETA(X2,A,BP2,IER)
TA 1-A

p" TB1-B
CALL FACT2 (TAl .TB1ITERS)
Y-TERS
VALM-(P2-P1)*FFAC*Y

215VALO-VALD+VALM
215CONTINUE

2102 RLSUM-VALO*PL
C THIS IS THE VALUE WHEN L IS ZERO
C NOW WANT TO CONSIDER L FROM 1 TO J. THIS IS THE SECOND SUM

DO 2501 L1l,J
RL-L
RL1-RJ-RL+1 .0
RL2-RL+1 .0

COMiBL-(DGAMMA (RJ3) ) /((DGAMMA(RL 1)) *(DGAMMA (RL2)))
LPL(-1)**(J-L)
FLP-LPL
POWER-DEL** (-RL)
FACL-F LP*COMBL*POWER

C NOW SHOULD CONSIDER M LOOP AGAIN.NOW A1 IS FROM ZERO TO NT-J FOR GIVEN L
C START WITH MIS ZERO.

A-RL+SGM
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B-SDEL
CALL MDBETA(X1,A,B,P1,IER)
CALL MDBETA(X2,A,B,P2,IER)
TA 1-A
TB 1-B
CALL FAC'2 (TAI ,TB1 ,TERS)
Y-TERS
VAL-(P2-P1) *Y
RMSUM-VAL
LL-NT-J
IF(LL.EQ.O) GO TO 4001

DO 4000 MI1,LL
Rti=M
RMI-WNT-RJ+1 .0
RM2.'WNT-RJ-RM+1 .0
Rti3zRM+1 .0
COMBM-(OGAMMA (RM1)) / ((DGAMiA (RM2) ) *(DGAMMA (RM3)))
FACM- (DEL** (-RM) ) *(COMBM)
A-RL+SGM
B-RM+SDEL
CALL MDBETA(X1.A,BP1,IER)
CALL MDBETA(X2,A,B,P2,IER)
TA 1-A
TB 1-B
CALL FACT2 (TAI ,TB1 STERS)
Y-TE RS
VAL-(P2-P1) *FACMi*Y

*~RMSUM-RMSUM+VAL
4000 CONTINUE
4001 RRSUMRMSUI
C THE MOST INNER LOOP IS FINISHED.

RLSUM-(FACL*RRSUM)+RLSUM
C THIS IS THE SUM FOR L LOOP
2501 CONTINUE
C L LOOP IS FINISHED.
C NOW FINISH J LOOP. THE MOST OUTER LOOP.

RJSUM- (COMBJ*RLSUM) +RJSUM

4 5000 CONTINUE
C SO WE EVALUATED G2.

2011 G2-RJSUM*WW
WRITE (6,62) G2,XT,NT

62 FORMAT(5x,'SECOND CONST-'FIO.5,5x,'XT-',F5.1,5x,'NT-',14)
C CHECK G2 NOW

IF(G2.GE.BET) GO TO 777
XT-XT+1 .0
GO TO 888

999 NT-NT+1
GO TO 11

888 WRITE(6,555) XT,NT
555 FORMAT(JOX,'Xm',FIO.5,5x,'N-',14)

STOP
ENDI SUBROUTINE FACTi (Al ,Bl.SON)
IMPLICIT REAL*8(A-H.O-Z)

11111U 111I 1110 Il I
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C-A1+6 1
IF-(A1.LE.57.O.AND.C.LE.57.O) GO TO 41
Cl-C-i .0
A2-AI-1.0
B2-B-1.O
C2 -A 2+82
I B=A2+1 .0
C=C2

PAY-Cl
DO 42 I-IB,IC
ZI-'
PAY-PAY*Z I

42 CONTINUE
PAYDAl .0
JA-B2
DO 43 J-1,JA
VJ-J
PAYDA-PAYDA*VJ

N. 43 CONTINUE
* SON-PAY/PAYDA

GO TO 45
J,41 SON-DGAMMA(C)! ((DGAMMJA (Al)) *(DGAMA (61)))

45 CONTINUE
RETURN
END
SUBROUTINE FACT2 (TAl ,TB1 .TERS)
IMPLICIT REAL*B (A-HO-Z)
C-TA 1+TBI
IF(TA1.LE.57.O.AND.C.LE.57.O) GO TO 71
cl-c-1.0
A2-TAl-'l.O
B2-TBI-1 .0
C 2-A 2+62
18-A2+1 .0
1C-C2
PAY-Cl
DO 72 I-IB,IC

P AY-P A Y*
72 CONTINUE

PAYDAl .0
JA-B2

DO 73 J-l,JA
PAYDA-PAYDA*VJ

73 CONTINUE
TERS-PAYDA/PAYS 71 GO TO 75

7TERS-((DGAMMiA(TAI))*(OGAMIIA(TBI)))/(DGAMMA(C))
75CONTINUE
RETURN
END

//GO.SYSLIB OD
D/O DSN-GWU.IMSL.V9.DLOADDISP-SHR

04
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//GO. SYS IIN DO
0.25000 113.00000 20.00000 0.10100 0.25000 1

/ / ' ! I IiI I
H A 11.111 IllR..IIIN



APPENDIX C

Illustrative Calculation of Expected Sample

Sizes for Curtailed Sequential Sampling

C.l. THE CASE OF TESTING ONE ITEM AT A TIME

We illustrate this for Stage 0. Here x* 5 , nt = 17.

We must have either 6 successes to accept, or 12 failures to

rej ect

P[nt=6IPt] = Pt = 0.015625

P[nt=7(1 ] = f6) Pt(l-pt) = 0.046875

P[nt=81p t ] = P(1-P ) = 0.0820312

P[nt=91p t ] _ [8) Pt(l-pt)3 = 0.109375

A'.,9 t 4 0.1230469

Pf 5~1~ t~ t

6 i 1.

Pfnt=lllp 1 [10) p 6 (-P) 5 0.1230469

P[nt=12pt] [1 P(l-Pt) + [1) (l-Pt) 1 2 = 0.1130371

P[nt=13lpt = Pt(l-Pt) + Ii pt(l-Pt)1 2 = 0.0968018

[?") p6(l-p )8 + [13) 2 12  0.083313
': P[nt=14lPt] -t ii P(l-Pt )  =003

,34
40

- - ., w



35

t1511 f11) 6 9 + (14) P3 1p12a0.724

11)= 6t )~ 10 + (5 41 t12.0.02204

Pintlt] 16in) 6 (p) 11 '+ (16) P54 _p12 -0.0666504

t.p =l71p I = 116 1 .,.-p (11 51

To obtain P[nt=j] , j = 6,7,...,17, we average out the above by

using g~ - . At Stage 0, y = 1 , 6=1

pInt=6] F (y+6)'(c) =0.1428571
.. J. F(Y+6+6)

P~n~=] 6 (Y+6)r(6+1)-0.019p~nt 71 6 r(y+6+7) 0.712

*pint=8] =21 r(y+6)r 1'(+2) ,0.083333
t~ r(Y-6+8)

pin 9] 56r(y+6)1'(6+3) , 0.0666667
t r(y4-6+9)

p~nt=101 = 126 r~+)r(6f4 -. 545455+6~yH+10) V1

p[nt=11] = 252 7(y+6)P(6+5) -0.0454545

-. t r(y+-6+11)

p~n=12 = 02r(y+6)r(6+6) + (y)r(S+12) -0.1103896

t r(y+6+12) r(y+6I12)

Vp~nt=13] = 792 r(y+-6)r(6+7) + 12 r(y+1)r(6+12) 0.901
t P~(yI6-f13) r(y+6+13) 00991

p[nt=14] = 1287 r(-y46)1(6+8) + 78 T'(Y+2)l'(6i12) =0.0857143

r r(y4-6+14) r(y+6+14)

p[nt=15] = 2002 r(y+6)F(6+)- + 364 r(y+3)r(6+:2) -0.075

r (y4-6+15) Fr(y+6+15)

p.'ntl=16] = 3003 r(y+6)r(6+10) + 35r(y+4)r(6+1 = 0.066176
A tr(y+6+16) r(y+64-16)

% fn=17] -4368 J'(Y+6)1'(6s-1) + 4368 P(y+5)P(6+12) = 0.0588235
r (y+6+17) r(y+6+17)

E~n] t 10.91

0-k -
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C.2. THE CASE OF TESTING IN BATCHES OF SIZE 3

Stage 0

Pt w0.5 (1p 0.5

.1 t

We must have either 6 successes to accept or 12 failures to reject.

Thus, n c{6,9,12,1S.181t

p~nt 61 Ip~ = (6) p6= 0.015625

(9' 6 4 ti
*p[nt=12Ipt (61 P61_ + (5J P6(1Pt) + (8 ) p6 (p) .321

+ 12) (1-p)U 12 0.3444824

p~n=1.1p (12) P 6(1-P ) 7 + 153) P6 (1)p8 + 1~4) p 6(1-p )9

1 ~ 1 p)' +11~ pt(1..P )1  + p~ ( 1 2 0.2536621

pint=18lpt f[15) P 5(1-~p )10 + [15) p 4(1-p ) 11 =0.1333008

Stage 1

pt = 0.875 (1p 0.125

x* =9 nt = 13
t

We must have either 10 successes to accept or 4 failures to reject.

Thus, n C[6,9,12,15)

=(6) p2 (1p 4 +(6p(1s+ 6

p(n 6pt] ~4 (sJ~t-t ( 56) 0.002967

1 :5 1
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P[nt-91p] [) p3(1-Pt)4 + 4 (1-P) 4 + p(-pt)4  0.0140249

-. P[nt=12p] () 6 4 7 1 4 8 4 10

+'€ 9 J Pt ) + 9 P 2= 0.8525519 t 9-Pt)

p[nt=15lp] =(12) P 9(1-P) 3 = 0.1291889
t t ~ 3  t t

Stage 2

P= 0.9 (i-Pt) = 0.1

.%N,

x*= 8 nt = 11

0 We must have either 9 successes to accept or 3 failures to reject.

Thus, n t{3,6,9,12}

p[nt=3p t] [) (1-pt) 3 =0.001

n P =61p t ] = Pt(1-Pt)3 + t) P2(1-P) + P 3(1-P) = 0.01485

""!P[nt=91P =  Pt4(l-P) + P(-P) + p6(1-P) + p 9 0.4245426

P[nt=12pt = 7t(l-Pt + Pt(l-Pt) = 0.5596074

Stage 3

Pt = 0.906 l-pt  0.094

x = 8  nt =i

The same enumeration as in Stage 2.

EStage 4
Pt 0.909 1-pt  0.091

tx* =8 nt =11

The same enumeration as in Stage 2.
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Stage 5

Pt = 0.875 1  pt = 0.1 2 5

x* = 9 nt =13
t

The same enumeration as in Stage 1.

Stage 6

Pt = 0.853 1 pt = 0.147

x* = 8 nt =12

We must have either 4 failures to reject or 9 successes to accept.

* Thus, nt {6,9,12}

P[nt=61pt] ( J 2 (1-p )4 + (6J p (l-p )5 + [6J )6 = 00054577

p[nt=9 P] =(6 P(1-Pt)4 + t7) P4(l-Pt) 4 + 3) p5(1-Pt) 4 + P = 0.2653362

r 9 61_t3+(91 +[ (1_pt
pint=12lp't] = Pt(l-P) pt(l-pt) pt(l-p) = 0.7292061

Stage 7

Pt = 0.825 (1-p t = 0.175

x* = 9 nt =14
j

We must have either 10 successes to accept or 5 failures to reject.

Thus, n t{6,9,12,15}

p[nt=61pt] = [5 p(1-pt)5 + (6 (1-p )6 = 0.0008412

. P[nt=91P t ] = ()Pt2(1-Pt ) 5+ [)Pt(l-Pt)5 + 8)Pt(l-pt = 0.010223744
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p[nt=121Pt] - Ps(1-P) 5 + (140) P(1Pt ) + (11) p7(1-P 5 + 9 40

+ [ P (1-P) +  P (1-P) 2  0.6805573

P[nt=15Pt] (1= pl(1-Pt )4 + Pt(1-P) = 0.3083778

tl ' ~4  t + t t

Stage 8

Pt = 0.833 (-p = 0.167

x* = 9 nt 
= 14

t

The same enumeration as in Stage 7.

Stage 9

.t = 0.820 (1-Pt) = 0.180

X* = 9 nt 
= 14

t

The same enumeration as in Stage 7.

Stage 10

-' = 0.837 (1-p t  0.163

*x* 9 nt = 14

The same enumeration as in Stage 7.

Stage 11

Pt = 0.841 = 0.159

X* =10 nt = 15
t

We must have either 11 successes to accept or 5 failures to reject.

Thus, nt C{6,9,12,15}
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p(ntu6 1pt] _ 6 pt(-Pt) + [6) (1-P )6  0.0005289

-p[nt1 ) 9 [6) P2(1_pt)5 + f1) p I(1-P )5 + f8) p 4(1-P )5 -0.0067523
9 5 5 10) 6 5 +ii)7 5 i0 11

Pfnt=12P t] 4 Pt(l-pt) + 4 t(1-Pt )  + Pt(1-Pt )  + '10' Pt

+ [l1) Pt P = 0.4321114

%-=l 1 Pt(l-Pt 10 Pt (-P 0.5606073

Stage 12

Pt = 0.836 (1-pt= 0.164

* x = 9 nt = 14

t

The same enumeration as in Stage 7.

Stage 13

Pt = 0.848 (1-pt = 0.152

x* = 8 n = 12i,% t

The same enumeration as in Stage 6.

Stage 14

Pt = 0.850 0.150

x* =8 nt  12

-" The same enumeration as in Stage 6.

To obtain the E(nt , we average out the above by using g(p

We illustrate this for Stage 0.
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p [nt=6] = r~+6 r(Y46)r(6) =0.1428571
t rmyr(6) M+-I6+-65

p~-g= r(Y+6) L6 r(y+)r(6+1) + 21 r(y+6)r(6+2) + 56 (6r6t0.512
t r(y)r(6) I'(y+65+7) T'(y+6+8) r~+40)

ptnt=12]1'y 6  126 r(Y-i6)1'(6+4) +252 r(y4-6)r(6+5) + 402r -46r(+6
= -)r 1 r(y4-i:+1 0) + (Y+65+11) r(y-I6+12)

*+ r~~r6+2] = 0.2103897

- (Y+6) T (-y+6) r(y+7) ry6 128 6+ 200 r (y+6) r (6+9)
p~ft15- r(Y)r(6) 192  r(-f'%+13) +18 y614 +202 r(y+,5+15)

+ 12 r(y+l)r(6+12) + 78 F(-y+2yPr(6+12) + 364 EL-Y+)j(6}2) = 0.2596154
-r(y+6+13) 

r(-y+46+14) r(++5

p~n=11 r(+ [F 0 '(y+5)F(c6+10) + 35r(y+4)r(6+11) 0.2
Nnj1B] ( r (6) L0 3  F(Y+6+15) + 36 (y-i6+15) 012

Em ] 11.84
t

Similarly, we can obtain E[n t for other stages.

10~
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